论文标题

毛细血管驱动的稀疏和破坏较弱的液体的破裂

Capillarity-driven thinning and breakup of weakly rate-thickening fluids

论文作者

Du, Jianyi, Ohtani, Hiroko, Ellwood, Kevin, McKinley, Gareth H.

论文摘要

在毛细血管驱动的稀疏的最后阶段,包括合成的汽车油,食品和含有聚合物添加剂的消费产品在内的许多商业液体表现出较弱的厚度厚的反应,其中大量累积的累积应变和高散发性应变速率改变了细液体液体细丝的稀疏动力学。因此,毛细血管驱动的变薄动力学通常在细丝破裂过程的早期和晚期中具有两个不同的区域,每个区域都以不同的机制为主。这些特征已纳入了一个简单的非弹性损坏(IRT)模型中,该模型具有线性和二次贡献对本构应力 - 应变率关系的贡献,在高应变速率下,明显的伸展粘度在高应变速率上缓慢增厚。我们从数值上计算IRT模型的变薄动力学,假设轴向轴对称细丝和没有液体惯性。计算结果激发了一种由通过相似性转换获得的二阶应力主导的新的自相似解决方案。新的渐近溶液会导致自相似的细丝形状比牛顿对应物更细长,并导致细丝中点半径的二次稀疏,并有时间分手接近奇异性。获得了一种新的渐近几何校正因子,获得了$ x \约0.5778 $,从中可以从基于不同应力分量的大小的插值时间变化的几何校正因子中回收更准确的真实伸展粘度。最后,我们提出了一种基于统计的协议,使用无参数标准选择最佳拟合的本构模型,从而使我们能够通过毛细管驱动的稀疏动力学量化扩展的流变行为,以更系统地对复杂的速率厚度粘粘粘弹性流体进行系统地更加系统地量化。

A number of commercial fluids, including synthetic automotive oils, food and consumer products containing polymer additives exhibit weakly rate-thickening responses in the final stages of capillarity-driven thinning, where a large accumulated strain and high extensional strain rate alter the thinning dynamics of the slender liquid filament. Consequently, the capillarity-driven thinning dynamics typically feature two distinct regions at the early and late stages of the filament breakup process, each dominated by distinct mechanisms. These features have been incorporated in a simple Inelastic Rate-Thickening (IRT) model with linear and quadratic contributions to the constitutive stress-strain rate relationship, where the apparent extensional viscosity slowly thickens at high strain rates. We numerically compute the thinning dynamics of the IRT model assuming an axially-slender axisymmetric filament and no fluid inertia. The computational results motivate a new self-similar solution dominated by the second-order stress obtained through a similarity transformation. The new asymptotic solution leads to a self-similar filament shape that is more slender than the Newtonian counterpart and results in a quadratic thinning of the mid-point radius of the filament with time to breakup close to singularity. A new and distinct asymptotic geometric correction factor, $X\approx 0.5778$ is obtained, from which a more accurate true extensional viscosity can be recovered from an interpolated time-varying geometric correction factor based on the magnitudes of different stress components. Finally, we propose a statistics-based protocol to select the best-fit constitutive model using a parameter-free criterion, enabling us to quantify the extensional rheological behavior through capillarity-driven thinning dynamics more systematically on complex rate-thickening viscoelastic fluids.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源