论文标题
CO和[CII]分子云的发射 - 恒星反馈和非平衡化学的影响
CO and [CII] line emission of molecular clouds -- the impact of stellar feedback and non-equilibrium chemistry
论文作者
论文摘要
我们分析合成$^{12} $ co,$^{13} $ CO和[CII] SILCC-ZOOM项目的模拟分子云的发射图,其中包括H $ _2 $,CO和C $^+$的fly-fly Evolution。我们使用有或没有恒星反馈的流体动力学和磁流失动力学云的模拟。我们介绍了使用Cloudy的C $^+$丰度的新颖后处理,以说明由于出色的辐射引起的碳的进一步电离状态。我们报告了反馈气泡中[CII]的第一个自洽合成发射图,这在很大程度上没有发射,正如最近在观测中发现的那样。 C $^+$质量仅受到恒星反馈的影响很大,但与没有反馈的运行相比,[CII]发光度增加了50-85美元。此外,我们研究了CO/[CII]线比的能力,作为云中H $ _2 $的示踪剂及其进化阶段。我们获得了$^{12} $ CO和$^{13} $ CO,没有明确的光度比率,$ L_ \ Mathrm {Co}/L_ \ Mathrm {[CII]} $。因此,它可以用作H $ _2 $质量分数的可靠度量。我们注意到$ l_ \ mathrm {co}/l_ \ mathrm {[CII]} $与H $ _2 $分数之间的单调关系,考虑了我们合成图的单个像素的比率,但散布较大。此外,我们表明,假设化学平衡会导致高估h $ _2 $和高达110%和30%的CO质量,并低估了H和C $^+$ 65%和7%。结果,$ l_ \ mathrm {co} $将被高估高达50%,而$ l_ \ mathrm {c [ii]} $被低估了35%。因此,分子云模拟中化学平衡的假设引入了固有的误差,最多为$ \ sim2 $的化学丰度,发光性和光度比。
We analyse synthetic $^{12}$CO, $^{13}$CO, and [CII] emission maps of simulated molecular clouds of the SILCC-Zoom project, which include an on-the-fly evolution of H$_2$, CO, and C$^+$. We use simulations of hydrodynamical and magnetohydrodynamical clouds, both with and without stellar feedback. We introduce a novel post-processing of the C$^+$ abundance using CLOUDY, to account for further ionization states of carbon due to stellar radiation. We report the first self-consistent synthetic emission maps of [CII] in feedback bubbles, largely devoid of emission inside them, as recently found in observations. The C$^+$ mass is only poorly affected by stellar feedback but the [CII] luminosity increases by $50 - 85$ per cent compared to runs without feedback. Furthermore, we investigate the capability of the CO/[CII] line ratio as a tracer of the amount of H$_2$ in the clouds and their evolutionary stage. We obtain, for both $^{12}$CO and $^{13}$CO, no clear trend of the luminosity ratio, $L_\mathrm{CO}/L_\mathrm{[CII]}$. It can therefore \textit{not} be used as a reliable measure of the H$_2$ mass fraction. We note a monotonic relation between $L_\mathrm{CO}/L_\mathrm{[CII]}$ and the H$_2$ fraction when considering the ratio for individual pixels of our synthetic maps, but with large scatter. Moreover, we show that assuming chemical equilibrium results in an overestimation of H$_2$ and CO masses of up to 110 and 30 per cent, respectively, and in an underestimation of H and C$^+$ masses of 65 and 7 per cent, respectively. In consequence, $L_\mathrm{CO}$ would be overestimated by up to 50 per cent, and $L_\mathrm{C[II]}$ be underestimated by up to 35 per cent. Hence, the assumption of chemical equilibrium in molecular cloud simulations introduces intrinsic errors of a factor of up to $\sim2$ in chemical abundances, luminosities and luminosity ratios.