论文标题
范德华异质结构中的多层原子放松
Multi-layered atomic relaxation in van der Waals heterostructures
论文作者
论文摘要
当二维范德华材料被堆叠以构建异质结构时,Moiré图案从扭曲的接口或单个层的晶格常数中出现。原子位置的放松是Moiré模式的直接,通用的后果,对物理特性具有许多影响。莫伊尔驱动的原子放松可能被天真地认为仅限于界面层,因此与多层异质结构无关。但是,我们提供了两种类型的范德华异质结构中弛豫三维性质的重要性的实验证据:首先,在小扭曲角度在石墨上扭曲的多层石墨烯中,我们观察到超过18个石墨烯层的宽松域的传播。其次,我们展示了多层pdte $ _2 $ bi $ _2 $ _2 $ se $ _3 $ themoiré晶格常数如何取决于pdte $ _2 $ layers的数量。在实验发现的激励下,我们开发了一种连续方法,以基于AB-Initio模拟给出的广义堆叠断层能量功能来对多层放松过程进行建模。利用该方法的连续性属性使我们能够访问大规模制度并与我们在这两个系统的实验数据达成协议。此外,众所周知,石墨烯的电子结构敏感取决于局部晶格变形。因此,我们研究了多层松弛对扭曲石墨系统状态局部密度的影响。我们确定对系统的可测量含义,可以通过扫描隧道显微镜在实验上访问。我们的多层松弛方法不仅限于讨论的系统,因此可以用来发现界面缺陷对各种层次感兴趣系统的影响。
When two-dimensional van der Waals materials are stacked to build heterostructures, moiré patterns emerge from twisted interfaces or from mismatch in lattice constant of individual layers. Relaxation of the atomic positions is a direct, generic consequence of the moiré pattern, with many implications for the physical properties. Moiré driven atomic relaxation may be naively thought to be restricted to the interfacial layers and thus irrelevant for multi-layered heterostructures. However, we provide experimental evidence for the importance of the three dimensional nature of the relaxation in two types of van der Waals heterostructures: First, in multi-layer graphene twisted on graphite at small twist angles ($θ\approx0.14^\circ$) we observe propagation of relaxation domains even beyond 18 graphene layers. Second, we show how for multi-layer PdTe$_2$ on Bi$_2$Se$_3$ the moiré lattice constant depends on the number of PdTe$_2$ layers. Motivated by the experimental findings, we developed a continuum approach to model multi-layered relaxation processes based on the generalized stacking fault energy functional given by ab-initio simulations. Leveraging the continuum property of the approach enables us to access large scale regimes and achieve agreement with our experimental data for both systems. Furthermore it is well known that the electronic structure of graphene sensitively depends on local lattice deformations. Therefore we study the impact of multi-layered relaxation on the local density of states of the twisted graphitic system. We identify measurable implications for the system, experimentally accessible by scanning tunneling microscopy. Our multi-layered relaxation approach is not restricted to the discussed systems, and can be used to uncover the impact of an interfacial defect on various layered systems of interest.