论文标题
星系组和簇的理想化模拟中的自旋驱动喷气反馈
Spin-driven jet feedback in idealised simulations of galaxy groups and clusters
论文作者
论文摘要
我们将黑洞旋转进化和喷气反馈模型实现为Swift,这是一种平滑的粒子流体动力学代码。使用逼真的自旋依赖性效率,假设邦迪积聚确定射流功率。喷气机沿黑洞的自旋轴发射,从而产生自然的重新定位和进动。我们将模型应用于星系组和簇的理想化模拟,发现喷气反馈成功地淬灭了所有系统中的气体冷却和恒星形成。我们的群体大小光环($ m_ \ mathrm {200} = 10^{13} $ $ \ $ \ mathrm {m} _ \ odot $)被一个由冷却流触发的强烈喷气剧集淬灭,并被热晕阳光释放的低功率喷气式喷气式释放。在更大的系统($ M_ \ MATHRM {200} \ GEQ 10^{14} $ $ \ MATHRM {M} _ \ odot $)中,热晕积分不足以消除星系,或者在第一次冷却后使它们震撼。这些星系经历了多个气体冷却,星形形成和喷气反馈的多发事件。在我们模拟的最庞大的星系群集中($ M_ \ Mathrm {200} = 10^{15} $ $ $ $ \ MATHRM {M} _ \ odot $),我们发现峰值冷气质量为$ 10^{10} $ $ $ $ \ $ \ MATHRM {M} $ \ mathrm {m} _ \ odot \ mathrm {yr}^{ - 1} $。这些值是在强烈冷却流期间实现的,这也触发了最强的喷气机,其峰值功率为$ 10^{47} $ $ \ MATHRM {ERG} \ HSPACE {0.3MM} \ MATHRM {S}^^{ - 1} $。这些喷气机随后关闭了冷却流和任何相关的恒星形成。如观测中所示,喷射膨胀的气泡抽出低渗透气体,随后在其唤醒中形成致密的冷却丝。
We implement a black hole spin evolution and jet feedback model into SWIFT, a smoothed particle hydrodynamics code. The jet power is determined self-consistently assuming Bondi accretion, using a realistic, spin-dependant efficiency. The jets are launched along the spin axis of the black hole, resulting in natural reorientation and precession. We apply the model to idealised simulations of galaxy groups and clusters, finding that jet feedback successfully quenches gas cooling and star formation in all systems. Our group-size halo ($M_\mathrm{200}=10^{13}$ $\mathrm{M}_\odot$) is quenched by a strong jet episode triggered by a cooling flow, and it is kept quenched by a low-power jet fed from hot halo accretion. In more massive systems ($M_\mathrm{200}\geq 10^{14}$ $\mathrm{M}_\odot$), hot halo accretion is insufficient to quench the galaxies, or to keep them quenched after the first cooling episode. These galaxies experience multiple episodes of gas cooling, star formation and jet feedback. In the most massive galaxy cluster that we simulate ($M_\mathrm{200}=10^{15}$ $\mathrm{M}_\odot$), we find peak cold gas masses of $10^{10}$ $\mathrm{M}_\odot$ and peak star formation rates of a few times $100$ $\mathrm{M}_\odot\mathrm{yr}^{-1}$. These values are achieved during strong cooling flows, which also trigger the strongest jets with peak powers of $10^{47}$ $\mathrm{erg}\hspace{0.3mm}\mathrm{s}^{-1}$. These jets subsequently shut off the cooling flows and any associated star formation. Jet-inflated bubbles draw out low-entropy gas that subsequently forms dense cooling filaments in their wakes, as seen in observations.