论文标题
通过自回归预测更新估算准贝斯 - 巴约西亚非参数密度估算
Quasi-Bayesian Nonparametric Density Estimation via Autoregressive Predictive Updates
论文作者
论文摘要
贝叶斯方法是由于先前引起的正则化作用,是小型数据制度统计推断的流行选择。在密度估计的背景下,标准的非参数贝叶斯方法是针对Dirichlet工艺混合模型的后验预测。通常,后验预测的直接估计是棘手的,因此方法通常诉诸于后验分布作为中间步骤。然而,最近的准巴约西亚预测配置库更新的发展使得无需后近似即可执行可探讨的预测密度估计。尽管这些估计器在计算上具有吸引力,但它们倾向于在非平滑数据分布上挣扎。这是由于可能从中得出所提出的Copula更新的可能性模型的相对限制性形式。为了解决这一缺点,我们考虑了一种具有自回归似然分解和高斯过程的贝叶斯非参数模型。尽管这种模型的预测更新通常是棘手的,但我们得出了实现最先进的准预测性更新,从而导致了小型数据制度。
Bayesian methods are a popular choice for statistical inference in small-data regimes due to the regularization effect induced by the prior. In the context of density estimation, the standard nonparametric Bayesian approach is to target the posterior predictive of the Dirichlet process mixture model. In general, direct estimation of the posterior predictive is intractable and so methods typically resort to approximating the posterior distribution as an intermediate step. The recent development of quasi-Bayesian predictive copula updates, however, has made it possible to perform tractable predictive density estimation without the need for posterior approximation. Although these estimators are computationally appealing, they tend to struggle on non-smooth data distributions. This is due to the comparatively restrictive form of the likelihood models from which the proposed copula updates were derived. To address this shortcoming, we consider a Bayesian nonparametric model with an autoregressive likelihood decomposition and a Gaussian process prior. While the predictive update of such a model is typically intractable, we derive a quasi-Bayesian predictive update that achieves state-of-the-art results in small-data regimes.