论文标题

部分可观测时空混沌系统的无模型预测

Pixel-by-pixel Mean Opinion Score (pMOS) for No-Reference Image Quality Assessment

论文作者

Kim, Wook-Hyung, Hahm, Cheul-hee, Baijal, Anant, Kim, Namuk, Cho, Ilhyun, Koo, Jayoon

论文摘要

基于深度学习的技术有助于自动图像质量评估(IQA)领域的显着进步。现有的IQA方法旨在根据图像级别(即整个图像)或贴片级(将图像分为多个单元并测量每个贴片的质量),以图像级(即整个图像)处的平均意见分数(MOS)来衡量图像的质量。某些应用可能需要评估像素级别(即每个像素的MOS值)处的质量,但是,由于其网络结构丢失了空间信息,因此在现有技术的情况下不可能评估这是不可能的。本文提出了一种IQA算法,除图像级MOS外,还可以测量像素级别的MOS。提出的算法由三个核心部分组成,即:i)本地IQA; ii)感兴趣的地区(ROI)预测; iii)高级功能嵌入。本地IQA部件在像素级或像素MOS上输出MOS - 我们称其为“ PMOS”。 ROI预测部分输出的权重来计算图像级IQA时区域的相对重要性。嵌入零件的高级特征提取高级图像特征,然后将其嵌入到本地IQA部分中。换句话说,所提出的算法产生三个输出:代表每个像素的MOS的PMO,来自ROI的权重表示区域的相对重要性,最后是通过PMOS和ROI值加权总和获得的图像级MOS。与现有流行的IQA技术相比,通过使用PMO和ROI权重获得的图像级MOS表现出较高的性能。此外,可视化结果表明,预测的PMO和ROI输出与人类视觉系统(HVS)的一般原理相当一致。

Deep-learning based techniques have contributed to the remarkable progress in the field of automatic image quality assessment (IQA). Existing IQA methods are designed to measure the quality of an image in terms of Mean Opinion Score (MOS) at the image-level (i.e. the whole image) or at the patch-level (dividing the image into multiple units and measuring quality of each patch). Some applications may require assessing the quality at the pixel-level (i.e. MOS value for each pixel), however, this is not possible in case of existing techniques as the spatial information is lost owing to their network structures. This paper proposes an IQA algorithm that can measure the MOS at the pixel-level, in addition to the image-level MOS. The proposed algorithm consists of three core parts, namely: i) Local IQA; ii) Region of Interest (ROI) prediction; iii) High-level feature embedding. The Local IQA part outputs the MOS at the pixel-level, or pixel-by-pixel MOS - we term it 'pMOS'. The ROI prediction part outputs weights that characterize the relative importance of region when calculating the image-level IQA. The high-level feature embedding part extracts high-level image features which are then embedded into the Local IQA part. In other words, the proposed algorithm yields three outputs: the pMOS which represents MOS for each pixel, the weights from the ROI indicating the relative importance of region, and finally the image-level MOS that is obtained by the weighted sum of pMOS and ROI values. The image-level MOS thus obtained by utilizing pMOS and ROI weights shows superior performance compared to the existing popular IQA techniques. In addition, visualization results indicate that predicted pMOS and ROI outputs are reasonably aligned with the general principles of the human visual system (HVS).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源