论文标题
SpecNet2:神经网络嵌入无正交的光谱
SpecNet2: Orthogonalization-free spectral embedding by neural networks
论文作者
论文摘要
通过内核矩阵或图形laplacian矩阵代表数据点的光谱方法已成为无监督数据分析的主要工具。在许多应用程序场景中,可以通过神经网络嵌入光谱,该神经网络可以在数据样本上进行训练,这为实现自动样本外扩展以及计算可扩展性提供了一种有希望的方法。在Spectralnet的原始论文中采用了这种方法(Shaham等,2018),我们称之为Specnet1。当前的论文引入了一种名为SpecNet2的新神经网络方法,以计算光谱嵌入,该方法优化了特征问题的等效目标,并删除了SpecNet1中的正交层。 SpecNet2还允许通过通过梯度公式跟踪每个数据点的邻居来分离图形亲和力矩阵的行采样和列。从理论上讲,我们表明,新的无矫正目标的任何局部最小化均显示出领先的特征向量。此外,证明了使用基于批处理的梯度下降方法的这种新的无正交目标的全局收敛。数值实验证明了在模拟数据和图像数据集上Specnet2的性能和计算效率提高。
Spectral methods which represent data points by eigenvectors of kernel matrices or graph Laplacian matrices have been a primary tool in unsupervised data analysis. In many application scenarios, parametrizing the spectral embedding by a neural network that can be trained over batches of data samples gives a promising way to achieve automatic out-of-sample extension as well as computational scalability. Such an approach was taken in the original paper of SpectralNet (Shaham et al. 2018), which we call SpecNet1. The current paper introduces a new neural network approach, named SpecNet2, to compute spectral embedding which optimizes an equivalent objective of the eigen-problem and removes the orthogonalization layer in SpecNet1. SpecNet2 also allows separating the sampling of rows and columns of the graph affinity matrix by tracking the neighbors of each data point through the gradient formula. Theoretically, we show that any local minimizer of the new orthogonalization-free objective reveals the leading eigenvectors. Furthermore, global convergence for this new orthogonalization-free objective using a batch-based gradient descent method is proved. Numerical experiments demonstrate the improved performance and computational efficiency of SpecNet2 on simulated data and image datasets.