论文标题
一维Vlasov-Poisson方程的四场汉密尔顿液体闭合
Four-field Hamiltonian fluid closures of the one-dimensional Vlasov-Poisson equation
论文作者
论文摘要
我们考虑了一对二二二节期vlasov-Poisson方程的前四个流体矩的动力学降低,即流体密度,流体速度,压力和热通量。该动态取决于状态方程以关闭系统。这种状态方程(闭合)将第五阶矩与峰度相关的第五阶矩与前四个矩的vlasov分布的速度相关。通过解决雅各比身份,我们得出了一个状态方程,该方程确保所得的流体模型是哈密顿量。我们表明,这种哈密顿的闭合允许还原流体模型的对称均质平衡保持稳定。
We consider a reduced dynamics for the first four fluid moments of the onedimensional Vlasov-Poisson equation, namely, the fluid density, fluid velocity, pressure and heat flux. This dynamics depends on an equation of state to close the system. This equation of state (closure) connects the fifth order moment-related to the kurtosis in velocity of the Vlasov distribution-with the first four moments. By solving the Jacobi identity, we derive an equation of state which ensures that the resulting reduced fluid model is Hamiltonian. We show that this Hamiltonian closure allows symmetric homogeneous equilibria of the reduced fluid model to be stable.