论文标题
量子近似优化算法的纠缠视角
An entanglement perspective on the quantum approximate optimization algorithm
论文作者
论文摘要
许多量子算法试图输出特定的bittring解决感兴趣的问题,或者如果解决方案退化,则一些。量子近似优化算法(QAOA)是大电路深度极限的情况,该算法旨在解决二次无约束的二进制优化问题。因此,这些算法的预期最终状态是涉及几个斑点的产品状态或低输入的叠加。在最初的$ n $ qubit产品状态$ \ vert 0 \ rangle^{\ otimes n} $与关于纠缠的最后一个之间会发生什么?在这里,我们考虑了用于在不同类型的图形上解决范式最大切割问题的QAOA算法。我们研究了由随机和优化的QAOA电路产生的纠缠生长和扩散,并发现初始状态和最终状态之间存在体积法律纠缠屏障。我们还研究了与随机矩阵理论相关的纠缠光谱。此外,我们将纠缠生产与旨在解决相同最大切割问题的量子退火方案进行了比较。最后,我们讨论了我们的结果对基于张量的基于网络的方法模拟QAOA电路的含义,这些方法依赖于低输入的效率,例如矩阵产品状态。
Many quantum algorithms seek to output a specific bitstring solving the problem of interest--or a few if the solution is degenerate. It is the case for the quantum approximate optimization algorithm (QAOA) in the limit of large circuit depth, which aims to solve quadratic unconstrained binary optimization problems. Hence, the expected final state for these algorithms is either a product state or a low-entangled superposition involving a few bitstrings. What happens in between the initial $N$-qubit product state $\vert 0\rangle^{\otimes N}$ and the final one regarding entanglement? Here, we consider the QAOA algorithm for solving the paradigmatic Max-Cut problem on different types of graphs. We study the entanglement growth and spread resulting from randomized and optimized QAOA circuits and find that there is a volume-law entanglement barrier between the initial and final states. We also investigate the entanglement spectrum in connection with random matrix theory. In addition, we compare the entanglement production with a quantum annealing protocol aiming to solve the same Max-Cut problems. Finally, we discuss the implications of our results for the simulation of QAOA circuits with tensor network-based methods relying on low-entanglement for efficiency, such as matrix product states.