论文标题

使用度量和语义属性准确的3D体形回归

Accurate 3D Body Shape Regression using Metric and Semantic Attributes

论文作者

Choutas, Vasileios, Muller, Lea, Huang, Chun-Hao P., Tang, Siyu, Tzionas, Dimitrios, Black, Michael J.

论文摘要

尽管从图像中回归3D人物的方法迅速发展,但估计的身体形状通常不会捕获真正的人形状。这是有问题的,因为对于许多应用,准确的身体形状与姿势一样重要。身体形状准确性延迟精度的关键原因是缺乏数据。尽管人类可以标记2D关节,并且这些约束3D姿势,但“标记” 3D体形并不容易。由于与图像和3D身体形状配对的数据很少见,因此我们利用了两个信息来源:(1)我们收集了各种“时尚”模型的互联网图像,以及一系列的人体测量值; (2)我们为3D车身网格和模型图像收集语言形状属性。综上所述,这些数据集提供了足够的约束来推断密集的3D形状。我们以几种新型的方式来利用人体测量和语言形状属性来训练称为Shapy的神经网络,从而从RGB图像中回归了3D人类姿势和形状。我们在公共基准测试上评估了shapy,但请注意,它们要么缺乏明显的身体形状变化,地面形状或衣服变化。因此,我们收集了一个新的数据集,用于评估3D人类形状估计,称为HBW,其中包含“野外人体”的照片,我们为其具有地面3D身体扫描。在这个新的基准测试中,Shapy在3D体形估计的任务上的最先进方法明显优于最先进的方法。这是第一次演示,即可以从易于观察的人体测量和语言形状属性中训练来自图像的3D体形回归。我们的模型和数据可在以下网址提供:shapy.is.tue.mpg.de

While methods that regress 3D human meshes from images have progressed rapidly, the estimated body shapes often do not capture the true human shape. This is problematic since, for many applications, accurate body shape is as important as pose. The key reason that body shape accuracy lags pose accuracy is the lack of data. While humans can label 2D joints, and these constrain 3D pose, it is not so easy to "label" 3D body shape. Since paired data with images and 3D body shape are rare, we exploit two sources of information: (1) we collect internet images of diverse "fashion" models together with a small set of anthropometric measurements; (2) we collect linguistic shape attributes for a wide range of 3D body meshes and the model images. Taken together, these datasets provide sufficient constraints to infer dense 3D shape. We exploit the anthropometric measurements and linguistic shape attributes in several novel ways to train a neural network, called SHAPY, that regresses 3D human pose and shape from an RGB image. We evaluate SHAPY on public benchmarks, but note that they either lack significant body shape variation, ground-truth shape, or clothing variation. Thus, we collect a new dataset for evaluating 3D human shape estimation, called HBW, containing photos of "Human Bodies in the Wild" for which we have ground-truth 3D body scans. On this new benchmark, SHAPY significantly outperforms state-of-the-art methods on the task of 3D body shape estimation. This is the first demonstration that 3D body shape regression from images can be trained from easy-to-obtain anthropometric measurements and linguistic shape attributes. Our model and data are available at: shapy.is.tue.mpg.de

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源