论文标题

矢量值$ l^p- $代数的BSE-Property

The BSE-property for vector-valued $L^p-$algebras

论文作者

Abtahi, Fatemeh, Amiri, Mitra, Rejali, Ali

论文摘要

令$ \ Mathcal A $为可分离的Banach代数,$ G $是本地紧凑的Hausdorff Group,$ 1 <P <\ iffty $。在本文中,我们首先提供了必要且充分的条件,在卷积产品下,$ l^p(g,\ mathcal a)$是Banach代数。然后,我们表征$ l^p(g,\ mathcal a)$的字符空间,如果$ \ nathcal a $是交换性的,而$ g $是abelian。此外,我们调查了$ l^p(g,\ mathcal a)$的bse-property $,并证明$ l^p(g,\ mathcal a)$是bse-algebra,并且仅当$ \ mathcal a $是bse-algebra和$ g $是有限的。最后,我们研究了$ l^p(g,\ mathcal a)$的bse-norm属性,并表明如果$ l^p(g,\ mathcal a)$是bse-norm代数,则$ \ nathcal a $就是这样。对于$ g $是有限的,$ \ mathcal a $是Unital的情况,我们证明了此声明的相反。

Let $\mathcal A$ be a separable Banach algebra, $G$ be a locally compact Hausdorff group and $1< p<\infty$. In this paper, we first provide a necessary and sufficient condition, for which $L^p(G,\mathcal A)$ is a Banach algebra, under convolution product. Then we characterize the character space of $L^p(G,\mathcal A)$, in the case where $\mathcal A$ is commutative and $G$ is abelian. Moreover, we investigate the BSE-property for $L^p(G,\mathcal A)$ and prove that $L^p(G,\mathcal A)$ is a BSE-algebra if and only if $\mathcal A$ is a BSE-algebra and $G$ is finite. Finally, we study the BSE-norm property for $L^p(G,\mathcal A)$ and show that if $L^p(G,\mathcal A)$ is a BSE-norm algebra then $\mathcal A$ is so. We prove the converse of this statement for the case where $G$ is finite and $\mathcal A$ is unital.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源