论文标题

通过线性嵌入进行宽带横梁形成

Broadband Beamforming via Linear Embedding

论文作者

DeLude, Coleman, Karnik, Santhosh, Davenport, Mark, Romberg, Justin

论文摘要

在现代应用中,多传感器阵列会受到不断增长的需求,以适应具有更高带宽的信号。用于宽带波束形成的标准方法,即数字波束形成和真实的时间延迟,很难大规模实施。在这项工作中,我们探索了一种宽带边界的替代方法,该方法使用一组线性测量和强大的低维信号子空间模型。直接从传感器采取的线性测量值是降低维数并限制阵列读数的方法。从这些嵌入式样品中,我们展示了如何使用SLEPIAN子空间模型将原始样品恢复到可证明的剩余误差中。 多传感器阵列子空间模型的先前工作已经从定性或渐近的角度分析了性能。相比之下,我们对不同维度降低策略保持阵列的增益的方式进行定量估计。我们还展示了如何使用空间和时间相关性来放松标准的Nyquist采样标准,如何通过快速算法来实现恢复,以及如何设计“硬件友好”线性测量。

In modern applications multi-sensor arrays are subject to an ever-present demand to accommodate signals with higher bandwidths. Standard methods for broadband beamforming, namely digital beamforming and true-time delay, are difficult and expensive to implement at scale. In this work, we explore an alternative method of broadband beamforming that uses a set of linear measurements and a robust low-dimensional signal subspace model. The linear measurements, taken directly from the sensors, serve as a method for dimensionality reduction and serve to limit the array readout. From these embedded samples, we show how the original samples can be recovered to within a provably small residual error using a Slepian subspace model. Previous work in multi-sensor array subspace models have largely analyzed performance from a qualitative or asymptotic perspective. In contrast, we give quantitative estimates of how well different dimensionality reduction strategies preserve the array gain. We also show how spatial and temporal correlations can be used to relax the standard Nyquist sampling criterion, how recovery can be achieved through fast algorithms, and how "hardware friendly" linear measurements can be designed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源