论文标题

DIFFWIRE:通过Lovász绑定重新布线的归纳图

DiffWire: Inductive Graph Rewiring via the Lovász Bound

论文作者

Arnaiz-Rodriguez, Adrian, Begga, Ahmed, Escolano, Francisco, Oliver, Nuria

论文摘要

图形神经网络(GNN)已被证明可以实现竞争结果,以解决与图形相关的任务,例如节点和图形分类,链接预测和节点以及各种域中的图形聚类。大多数GNN使用消息传递框架,因此称为MPNN。尽管有令人鼓舞的结果,但据报道,MPNN会遭受过度平滑,过度划分和不足的影响。文献中已经提出了图形重新布线和图形池作为解决这些局限性的解决方案。但是,大多数最先进的图形重新布线方法无法保留图形的全局拓扑,既没有可分化也不是诱导性的,并且需要调整超参数。在本文中,我们提出了Diffwire,这是一个在MPNN中进行图形重新布线的新型框架,它通过利用Lovász绑定来原理,完全可区分且无参数。提出的方法通过提出两个新的,ct层中的新的互补层来提供统一的图形重新布线理论,该层是一个学习通勤时间并将其用作边缘重新加权的相关函数的层。以及差距层,是一个优化光谱差距的图层,具体取决于网络的性质和手头的任务。我们从经验上用基准数据集分别验证这些层的每个层的值进行图形分类。我们还进行了有关使用CT层用于同粒细胞和异性淋巴结任务的初步研究。 Diffwire将通勤时间的可学习性汇总到相关的曲率定义,为创建更具表现力的MPNN的开场打开了大门。

Graph Neural Networks (GNNs) have been shown to achieve competitive results to tackle graph-related tasks, such as node and graph classification, link prediction and node and graph clustering in a variety of domains. Most GNNs use a message passing framework and hence are called MPNNs. Despite their promising results, MPNNs have been reported to suffer from over-smoothing, over-squashing and under-reaching. Graph rewiring and graph pooling have been proposed in the literature as solutions to address these limitations. However, most state-of-the-art graph rewiring methods fail to preserve the global topology of the graph, are neither differentiable nor inductive, and require the tuning of hyper-parameters. In this paper, we propose DiffWire, a novel framework for graph rewiring in MPNNs that is principled, fully differentiable and parameter-free by leveraging the Lovász bound. The proposed approach provides a unified theory for graph rewiring by proposing two new, complementary layers in MPNNs: CT-Layer, a layer that learns the commute times and uses them as a relevance function for edge re-weighting; and GAP-Layer, a layer to optimize the spectral gap, depending on the nature of the network and the task at hand. We empirically validate the value of each of these layers separately with benchmark datasets for graph classification. We also perform preliminary studies on the use of CT-Layer for homophilic and heterophilic node classification tasks. DiffWire brings together the learnability of commute times to related definitions of curvature, opening the door to creating more expressive MPNNs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源