论文标题
最大平坦亚曲线的曲折周期和振荡积分的最大生长
The Maximal Growth Of Toric Periods and Oscillatory Integrals for Maximal Flat Submanifolds
论文作者
论文摘要
我们证明了与PGL形式相关的紧凑型局部对称空间上Hecke-maass形式的曲折周期的新欧米茄结果(3)。这是由关于L功能的最大生长以及关于自多态时期大小的问题的猜想的动机。我们还证明了在更一般的非紧凑型局部局部对称空间上最大平坦时期的均匀渐近结果,这是实际相对轨道积分的主要输入范围。
We prove a new omega result for toric periods of Hecke-Maass forms on compact locally symmetric spaces associated to forms of PGL(3). This is motivated by conjectures on the maximal growth of L-functions as well as by questions about the size of automorphic periods. We also prove a mean square asymptotic result for maximal flat periods on more general locally symmetric spaces of non-compact type, which takes as main input bounds for real relative orbital integrals.