论文标题

部分可观测时空混沌系统的无模型预测

A Comprehensive Survey on Deep Clustering: Taxonomy, Challenges, and Future Directions

论文作者

Zhou, Sheng, Xu, Hongjia, Zheng, Zhuonan, Chen, Jiawei, li, Zhao, Bu, Jiajun, Wu, Jia, Wang, Xin, Zhu, Wenwu, Ester, Martin

论文摘要

聚类是一项基本的机器学习任务,在文献中已广泛研究。经典聚类方法遵循以下假设:数据通过各种表示形式的学习技术以矢量形式表示为特征。随着数据变得越来越复杂和复杂,浅(传统)聚类方法无法再处理高维数据类型。随着深度学习的巨大成功,尤其是深度无监督的学习,在过去的十年中,已经提出了许多具有深层建筑的代表性学习技术。最近,已经提出了深层聚类的概念,即共同优化表示的学习和聚类,因此引起了社区的日益关注。由深度学习在聚类中取得巨大成功的动机,最基本的机器学习任务之一以及该方向的最新进展,在本文中,我们通过提出针对不同最先进方法的新分类法进行了全面的对深度聚类的调查。我们总结了深度聚类的基本组成部分,并通过他们设计深度表示学习和聚类之间的相互作用的方式对现有方法进行了分类。此外,这项调查还提供了流行的基准数据集,评估指标和开源实现,以清楚地说明各种实验设置。最后但并非最不重要的一点是,我们讨论了深度聚类的实际应用,并提出了挑战性的主题,应将进一步的调查作为未来的方向。

Clustering is a fundamental machine learning task which has been widely studied in the literature. Classic clustering methods follow the assumption that data are represented as features in a vectorized form through various representation learning techniques. As the data become increasingly complicated and complex, the shallow (traditional) clustering methods can no longer handle the high-dimensional data type. With the huge success of deep learning, especially the deep unsupervised learning, many representation learning techniques with deep architectures have been proposed in the past decade. Recently, the concept of Deep Clustering, i.e., jointly optimizing the representation learning and clustering, has been proposed and hence attracted growing attention in the community. Motivated by the tremendous success of deep learning in clustering, one of the most fundamental machine learning tasks, and the large number of recent advances in this direction, in this paper we conduct a comprehensive survey on deep clustering by proposing a new taxonomy of different state-of-the-art approaches. We summarize the essential components of deep clustering and categorize existing methods by the ways they design interactions between deep representation learning and clustering. Moreover, this survey also provides the popular benchmark datasets, evaluation metrics and open-source implementations to clearly illustrate various experimental settings. Last but not least, we discuss the practical applications of deep clustering and suggest challenging topics deserving further investigations as future directions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源