论文标题
宽贝叶斯神经网络具有简单的重量后部:理论和加速抽样
Wide Bayesian neural networks have a simple weight posterior: theory and accelerated sampling
论文作者
论文摘要
我们引入了重新定性,这是一种数据依赖性的重新聚集化,将贝叶斯神经网络(BNN)转化为后部的分布,其KL对BNN的差异随着图层宽度的增长而消失。重新定义图直接作用于参数,其分析简单性补充了宽BNN在功能空间中宽的BNN的已知神经网络过程(NNGP)行为。利用重新定性,我们开发了马尔可夫链蒙特卡洛(MCMC)后采样算法,该算法使BNN更快地混合。这与MCMC在高维度上的表现通常较差形成鲜明对比。对于完全连接和残留网络,我们观察到有效样本量高达50倍。在各个宽度上都取得了改进,并在层宽度的重新培训和标准BNN之间的边缘。
We introduce repriorisation, a data-dependent reparameterisation which transforms a Bayesian neural network (BNN) posterior to a distribution whose KL divergence to the BNN prior vanishes as layer widths grow. The repriorisation map acts directly on parameters, and its analytic simplicity complements the known neural network Gaussian process (NNGP) behaviour of wide BNNs in function space. Exploiting the repriorisation, we develop a Markov chain Monte Carlo (MCMC) posterior sampling algorithm which mixes faster the wider the BNN. This contrasts with the typically poor performance of MCMC in high dimensions. We observe up to 50x higher effective sample size relative to no reparametrisation for both fully-connected and residual networks. Improvements are achieved at all widths, with the margin between reparametrised and standard BNNs growing with layer width.