论文标题

Let-3D-AP:纵向误差耐受3D仅相机3D检测的平均精度

LET-3D-AP: Longitudinal Error Tolerant 3D Average Precision for Camera-Only 3D Detection

论文作者

Hung, Wei-Chih, Casser, Vincent, Kretzschmar, Henrik, Hwang, Jyh-Jing, Anguelov, Dragomir

论文摘要

3D平均精度(3D AP)依赖于预测和地面真相对象之间的联合的交集。但是,仅摄像头检测器的深度精度有限,这可能会导致其他合理的预测,这些预测遭受了如此纵向的定位误差,被视为假阳性。因此,我们建议3D AP度量的变体在深度估计误差方面更具允许性。具体而言,我们新颖的纵向误差耐受度指标,Let-3D-AP和Let-3D-APL,允许预测框的纵向定位误差达到给定的公差。为了评估所提出的指标,我们还为Waymo打开数据集构建了一个新的测试集,该数据集是针对仅相机3D检测方法量身定制的。令人惊讶的是,我们发现基于摄像头的最新检测器可以以10%的深度误差耐受性胜过基于流行的激光雷达检测器,这表明现有的基于摄像头的检测器已经有可能超过下游应用中基于激光雷达的检测器。我们认为,拟议的指标和新的基准数据集将通过提供更有用的信号来更好地指示系统级的性能,从而促进仅相机3D检测领域的进步。

The 3D Average Precision (3D AP) relies on the intersection over union between predictions and ground truth objects. However, camera-only detectors have limited depth accuracy, which may cause otherwise reasonable predictions that suffer from such longitudinal localization errors to be treated as false positives. We therefore propose variants of the 3D AP metric to be more permissive with respect to depth estimation errors. Specifically, our novel longitudinal error tolerant metrics, LET-3D-AP and LET-3D-APL, allow longitudinal localization errors of the prediction boxes up to a given tolerance. To evaluate the proposed metrics, we also construct a new test set for the Waymo Open Dataset, tailored to camera-only 3D detection methods. Surprisingly, we find that state-of-the-art camera-based detectors can outperform popular LiDAR-based detectors with our new metrics past at 10% depth error tolerance, suggesting that existing camera-based detectors already have the potential to surpass LiDAR-based detectors in downstream applications. We believe the proposed metrics and the new benchmark dataset will facilitate advances in the field of camera-only 3D detection by providing more informative signals that can better indicate the system-level performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源