论文标题

部分可观测时空混沌系统的无模型预测

Good Quantum LDPC Codes with Linear Time Decoders

论文作者

Dinur, Irit, Hsieh, Min-Hsiu, Lin, Ting-Chun, Vidick, Thomas

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

We construct a new explicit family of good quantum low-density parity-check codes which additionally have linear time decoders. Our codes are based on a three-term chain $(\mathbb{F}_2^{m\times m})^V \quad \xrightarrow{δ^0}\quad (\mathbb{F}_2^{m})^{E} \quad\xrightarrow{δ^1} \quad \mathbb{F}_2^F$ where $V$ ($X$-checks) are the vertices, $E$ (qubits) are the edges, and $F$ ($Z$-checks) are the squares of a left-right Cayley complex, and where the maps are defined based on a pair of constant-size random codes $C_A,C_B:\mathbb{F}_2^m\to\mathbb{F}_2^Δ$ where $Δ$ is the regularity of the underlying Cayley graphs. One of the main ingredients in the analysis is a proof of an essentially-optimal robustness property for the tensor product of two random codes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源