论文标题
部分可观测时空混沌系统的无模型预测
Deep Learning and Handheld Augmented Reality Based System for Optimal Data Collection in Fault Diagnostics Domain
论文作者
论文摘要
与当前的AI或机器人系统相比,人类轻松地浏览其环境,使数据收集诸如Trivial之类的任务。但是,人类发现很难建模隐藏在数据中的复杂关系。 AI系统,尤其是深度学习(DL)算法,令人印象深刻地捕获了这些复杂的关系。共生耦合人类和计算机的优势可以同时最大程度地减少所需的数据并构建复杂的输入映射模型。本文通过提出新型的人机相互作用框架来使用最小数据执行故障诊断来实现这种耦合。收集用于诊断复杂系统故障的数据是困难且耗时的。最小化所需数据将增加数据驱动模型在诊断故障时的实用性。该框架为人类用户提供了指令,以收集数据,以减轻用于训练和测试故障诊断模型的数据之间的差异。该框架由三个组成部分组成:(1)用于开发培训数据集的数据收集的增强学习算法,(2)用于诊断故障的深度学习算法,以及(3)用于测试数据的手持式数据收集的手持式增强现实应用程序。所提出的框架提供了超过100 \%的精度,并在一个新的数据集上召回了每个故障条件的一个实例。此外,还进行了一项可用性研究,以评估手持式增强现实应用程序的用户体验,所有用户都可以遵循提供的步骤。
Compared to current AI or robotic systems, humans navigate their environment with ease, making tasks such as data collection trivial. However, humans find it harder to model complex relationships hidden in the data. AI systems, especially deep learning (DL) algorithms, impressively capture those complex relationships. Symbiotically coupling humans and computational machines' strengths can simultaneously minimize the collected data required and build complex input-to-output mapping models. This paper enables this coupling by presenting a novel human-machine interaction framework to perform fault diagnostics with minimal data. Collecting data for diagnosing faults for complex systems is difficult and time-consuming. Minimizing the required data will increase the practicability of data-driven models in diagnosing faults. The framework provides instructions to a human user to collect data that mitigates the difference between the data used to train and test the fault diagnostics model. The framework is composed of three components: (1) a reinforcement learning algorithm for data collection to develop a training dataset, (2) a deep learning algorithm for diagnosing faults, and (3) a handheld augmented reality application for data collection for testing data. The proposed framework has provided above 100\% precision and recall on a novel dataset with only one instance of each fault condition. Additionally, a usability study was conducted to gauge the user experience of the handheld augmented reality application, and all users were able to follow the provided steps.