论文标题
部分可观测时空混沌系统的无模型预测
Sutured contact homology, conormal stops and hyperbolic knots
论文作者
论文摘要
我们将综合结构应用于双曲结$ k \ subset S^3 $,并研究缝合的触点歧管$(v,ξ)$,通过获取单位conormal $ \ la_k \ la_k \ subset(st^*s^*s^3 ,,ξ_\ text {st})的标准域的补充获得。我们表明,带有产品结构的单位纤维$ \ la_0 $的缝合的Legendrian接触同源性是结(最多镜像)的完全不变。这也可以看作是$ st^* s^3 $中光纤同源性的计算,以$ \ la_k $停止。我们的主要工具是,对于任何Submanifold $ n \ subset M $,是单位conmormal $ \ la_n $的补充与$ m \ setMinus n $的单位捆绑包之间的明确关系。
We apply the conormal construction to a hyperbolic knot $K \subset S^3$, and study the sutured contact manifold $(V, ξ)$ obtained by taking the complement of a standard neighbourhood of the unit conormal $\La_K \subset (ST^*S^3, ξ_\text{st})$. We show that the sutured Legendrian contact homology of a unit fiber $\La_0$, with its product structure, is a complete invariant of the knot (up to mirror). This can also be seen as the computation of the homology of the fiber in $ST^* S^3$, stopped at $\La_K$. Our main tool is, for any submanifold $N \subset M$, an explicit relationship between the complement of a unit conormal $\La_N$, and the unit bundle of $M \setminus N$.