论文标题
在Arakelov几何形状中正常锥的变形上
On the deformation to the normal cone in Arakelov geometry
论文作者
论文摘要
我们提出了正常锥体变形的Arakelov理论版本。特别是,几何数据充满了Hermitian线束的变形。我们介绍了称为算术希尔伯特不变的数值不变性,并证明了这些不变的沿变形。在以下文章中,这种数字定理的保守性将允许示范算术Hilbert-Samuel定理。
We present an Arakelov theoretic version of the deformation to the normal cone. In particular, the geometric data is enriched with a deformation of a Hermitian line bundle. We introduce numerical invariants called arithmetic Hilbert invariants and prove the conservation of these invariants along the deformation. In a following article, this conservation of number theorem will allow a demonstration of the arithmetic Hilbert-Samuel theorem.