论文标题

AMOS:用于多功能医疗图像分割的大型腹部多器官基准

AMOS: A Large-Scale Abdominal Multi-Organ Benchmark for Versatile Medical Image Segmentation

论文作者

Ji, Yuanfeng, Bai, Haotian, Yang, Jie, Ge, Chongjian, Zhu, Ye, Zhang, Ruimao, Li, Zhen, Zhang, Lingyan, Ma, Wanling, Wan, Xiang, Luo, Ping

论文摘要

尽管近年来从CT/MRI扫描中自动腹部多器官分割取得了很大进展,但由于缺乏各种临床场景中缺乏大规模的基准测试,对模型的能力的全面评估受到阻碍。收集和标记3D医学数据的高成本的限制,迄今为止的大多数深度学习模型都由具有有限数量的感兴趣或样品器官的数据集驱动,这仍然限制了现代深层模型的力量,并且很难提供各种方法的完全全面且公平的估算。为了减轻局限性,我们提出了AMO,这是一个大型,多样的临床数据集,用于腹部器官分割。 AMO提供了500 CT和100次MRI扫描,从多中心,多供应商,多模式,多相,多疾病,多疾病患者中收集,每个患者都有15个腹部器官的体素级注释,提供了挑战性的示例,并提供了用于研究稳健分割算法算法的较强的示例和测试范围,以下不同的algorith algorithms andervents andervents andervens andervens andlede anderve andepers andervens。我们进一步基准了几种最先进的医疗细分模型,以评估此新挑战性数据集中现有方法的状态。我们已公开提供数据集,基准服务器和基线,并希望激发未来的研究。信息可以在https://amos22.grand-challenge.org上找到。

Despite the considerable progress in automatic abdominal multi-organ segmentation from CT/MRI scans in recent years, a comprehensive evaluation of the models' capabilities is hampered by the lack of a large-scale benchmark from diverse clinical scenarios. Constraint by the high cost of collecting and labeling 3D medical data, most of the deep learning models to date are driven by datasets with a limited number of organs of interest or samples, which still limits the power of modern deep models and makes it difficult to provide a fully comprehensive and fair estimate of various methods. To mitigate the limitations, we present AMOS, a large-scale, diverse, clinical dataset for abdominal organ segmentation. AMOS provides 500 CT and 100 MRI scans collected from multi-center, multi-vendor, multi-modality, multi-phase, multi-disease patients, each with voxel-level annotations of 15 abdominal organs, providing challenging examples and test-bed for studying robust segmentation algorithms under diverse targets and scenarios. We further benchmark several state-of-the-art medical segmentation models to evaluate the status of the existing methods on this new challenging dataset. We have made our datasets, benchmark servers, and baselines publicly available, and hope to inspire future research. Information can be found at https://amos22.grand-challenge.org.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源