论文标题

Transdrift:使用变压器对单词变形漂移进行建模

TransDrift: Modeling Word-Embedding Drift using Transformer

论文作者

Madaan, Nishtha, Chaudhury, Prateek, Kumar, Nishant, Bedathur, Srikanta

论文摘要

在现代的NLP应用程序中,单词嵌入是一个至关重要的主链,可以在许多任务中很容易共享。但是,随着文本分布的变化和单词语义随着时间的推移而发展,如果单词表示不符合数据漂移,则使用嵌入的下游应用程序可能会受到影响。因此,将单词嵌入与基础数据分布一致是一个关键问题。在这项工作中,我们解决了这个问题,并提出了Transdrift,这是一种基于变压器的嵌入预测模型。利用变压器的灵活性,我们的模型可以准确地了解嵌入漂移的动力学,并预测未来的嵌入。在实验中,我们与现有方法进行了比较,并表明我们的模型比基线更准确地预测了嵌入单词的预测。至关重要的是,通过将预测的嵌入作为下游分类任务的骨架,我们表明,与以前的方法相比,嵌入会导致卓越的性能。

In modern NLP applications, word embeddings are a crucial backbone that can be readily shared across a number of tasks. However as the text distributions change and word semantics evolve over time, the downstream applications using the embeddings can suffer if the word representations do not conform to the data drift. Thus, maintaining word embeddings to be consistent with the underlying data distribution is a key problem. In this work, we tackle this problem and propose TransDrift, a transformer-based prediction model for word embeddings. Leveraging the flexibility of transformer, our model accurately learns the dynamics of the embedding drift and predicts the future embedding. In experiments, we compare with existing methods and show that our model makes significantly more accurate predictions of the word embedding than the baselines. Crucially, by applying the predicted embeddings as a backbone for downstream classification tasks, we show that our embeddings lead to superior performance compared to the previous methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源