论文标题

大型3D体积粒子跟踪赛车测定法的光学考虑因素

Optical Considerations for Large 3D Volumetric Particle Tracking Velocimetry

论文作者

Abitan, H., Zhang, Y., Ribergård, S. l., Velte, C. M.

论文摘要

在过去的十年中,计算能力的持续增加和粒子跟踪算法的改进一直使得在3D体积粒子跟踪速度计(3D-PTV)实验中跟踪大量的颗粒是可行的。同样,相对较新的$ 15 \:μm$空气肥皂气泡(AFSB)与使用$ 300 \:μm$ $ $ $ $ $ HELLIUM FIRIM FIRAIL BUBBLES(HFSB)相比,较高粒子密度的使用促进了较高的粒子密度的使用,因此可以改善此类测量值的空间分辨率。进行3D-PTV实验的趋势会增加较大的体积或在较高的颗粒密度下,较小颗粒的趋势使照明源的功率和图像分析的功率越来越高。一方面,它需要一个可靠的模型来估计从MIE散射粒子上测量在CMOS检测器上的信号水平。另一方面,它还需要一个模型,以估算图像分辨率上的限制因子,其中量中的大量粒子被映射到2D图像中。在这里,我们提出了一个模型,该模型在3D-PTV实验中从任意大体积内的MIE散射粒子中从数值估算CMOS检测器上的信号水平。该模型考虑了景深,粒子密度,MIE因子,激光脉冲能量和其他光学参数的影响。此后,我们根据景深和点状颗粒的密度来研究图像分辨率的物理极限。最后,我们提供了三个真实的实验室示例,这些实验室示例说明了如何使用模型的相关表达式以估计信号级别和图像分辨率

The continual increase in computational power and the improvement of algorithms for particle tracking in the past decade have been making it feasible to track larger amounts of particles in 3D Volumetric Particle Tracking Velocimetry (3D-PTV) experiments. Also, the relatively recent introduction of $15 \: μm$ Air Filled Soap Bubbles (AFSB) has been facilitating the usage of higher particle densities and hence the improvement of the spatial resolution of such measurements, compared with experiments that use $300 \: μm $ Hellium-Filled Air Bubbles (HFSB). The trend to conduct 3D-PTV experiments with ever increasing larger volumes or at higher particle densities with smaller particles sets an ever increasing strain on the power of the illumination source and upon the image analysis. On one hand it requires a reliable model to estimate the signal level that is measured on a CMOS detector from a Mie scattering particle. On the other hand it requires also a model for estimating the limiting factors upon the image resolution where a large amount of particles within a volume are mapped into a 2D image. Here, we present a model that estimates numerically the signal level on a CMOS detector from a Mie scattering particle within an arbitrary large volume in a 3D-PTV experiment. The model considers the effect of the depth of field, particle density, Mie factor, laser pulse energy and other optical parameters. Thereafter, we investigate the physical limit of the image resolution depending on the depth of field and the density of point-like particles. Finally, we supply three real lab examples that illustrate how to use the relevant expressions of the models in order to estimate the signal level and the image resolution

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源