论文标题
用于自动分析大规模非结构化临床Cine CMR数据库的AI工具
An AI tool for automated analysis of large-scale unstructured clinical cine CMR databases
论文作者
论文摘要
已经提出了人工智能(AI)技术来自动对短轴(SAX)Cine心脏磁共振共鸣(CMR)自动分析,但是不存在CMR分析工具以自动分析大型(非结构化的)临床CMR数据集。我们开发并验证了一个可靠的AI工具,用于在大型临床数据库中从SAX Cine CMR开始自动量化心脏功能。我们用于处理和分析CMR数据库的管道包括自动步骤,以确定正确的数据,可靠的图像预处理,用于SAX CMR的双脑识别分割的AI算法以及功能性生物标志物的估计以及自动化后的分析后质量控制,以检测和正确错误。该分割算法对来自两家NHS医院的2793 CMR扫描进行了培训,并在该数据集(n = 414)的其他病例和五个外部数据集(n = 6888)上进行了验证,包括使用来自所有主要Vendors的CMR扫描仪在12个不同中心获得的各种疾病患者的扫描。心脏生物标志物中的中值绝对错误在观察者间变异性范围内:<8.4ml(左心室体积),<9.2ml(右心室体积),<13.3g(左心室质量)和<5.9%(弹性障碍)(弹性障碍)。根据心脏病和扫描仪供应商的表型的病例分层,在所有组中表现出良好的表现。我们表明,我们提出的工具结合了图像预处理步骤,这是一种在大型多域CMR数据集和质量控制步骤中训练的可域名AI算法,可以对多个中心,供应商和心脏病的(临床或研究)数据库进行强有力的分析。这使我们可以翻译我们的工具,以用于大型多中心数据库的全自动处理。
Artificial intelligence (AI) techniques have been proposed for automating analysis of short axis (SAX) cine cardiac magnetic resonance (CMR), but no CMR analysis tool exists to automatically analyse large (unstructured) clinical CMR datasets. We develop and validate a robust AI tool for start-to-end automatic quantification of cardiac function from SAX cine CMR in large clinical databases. Our pipeline for processing and analysing CMR databases includes automated steps to identify the correct data, robust image pre-processing, an AI algorithm for biventricular segmentation of SAX CMR and estimation of functional biomarkers, and automated post-analysis quality control to detect and correct errors. The segmentation algorithm was trained on 2793 CMR scans from two NHS hospitals and validated on additional cases from this dataset (n=414) and five external datasets (n=6888), including scans of patients with a range of diseases acquired at 12 different centres using CMR scanners from all major vendors. Median absolute errors in cardiac biomarkers were within the range of inter-observer variability: <8.4mL (left ventricle volume), <9.2mL (right ventricle volume), <13.3g (left ventricular mass), and <5.9% (ejection fraction) across all datasets. Stratification of cases according to phenotypes of cardiac disease and scanner vendors showed good performance across all groups. We show that our proposed tool, which combines image pre-processing steps, a domain-generalisable AI algorithm trained on a large-scale multi-domain CMR dataset and quality control steps, allows robust analysis of (clinical or research) databases from multiple centres, vendors, and cardiac diseases. This enables translation of our tool for use in fully-automated processing of large multi-centre databases.