论文标题

改进的高斯 - 伯努利(Gaussian-Bernoulli)限制了无人机通信系统

Improved Gaussian-Bernoulli Restricted Boltzmann Machines for UAV-Ground Communication Systems

论文作者

Abdullah, Osamah A., Batistatos, Michael C., Al-Hraishawi, Hayder

论文摘要

无人驾驶飞机(UAV)作为下一代通信系统的有前途的技术稳步增长,因为它们具有吸引人的功能,例如具有高海拔,按需低成本部署和快速响应的广泛覆盖范围。由于空中链路的高移动性和独特的频道特征,无人机通信与常规的陆地和卫星通信根本不同。但是,由于动态传播环境和可变传输延迟,获得有效的渠道状态信息(CSI)是具有挑战性的。在本文中,提出了一个基于深度学习(DL)的CSI预测框架,以通过从无人机无线信号中提取最歧视性特征来解决通道老化问题。具体而言,我们开发了多个高斯伯努利(Bernoulli)限制的Boltzmann机器(GBRBM)的程序,以减小尺寸,并与基于自动编码器的基于自动编码器的深神经网络(DNNS)合并。为了评估所提出的方法,获得了与商业蜂窝网络中与基础站通信的无人机通信的实际数据测量结果,并用于培训和验证。数值结果表明,对于各种无人机飞行方案的通道采集,所提出的方法是准确的,并且表现优于常规DNN。

Unmanned aerial vehicle (UAV) is steadily growing as a promising technology for next-generation communication systems due to their appealing features such as wide coverage with high altitude, on-demand low-cost deployment, and fast responses. UAV communications are fundamentally different from the conventional terrestrial and satellite communications owing to the high mobility and the unique channel characteristics of air-ground links. However, obtaining effective channel state information (CSI) is challenging because of the dynamic propagation environment and variable transmission delay. In this paper, a deep learning (DL)-based CSI prediction framework is proposed to address channel aging problem by extracting the most discriminative features from the UAV wireless signals. Specifically, we develop a procedure of multiple Gaussian Bernoulli restricted Boltzmann machines (GBRBM) for dimension reduction and pre-training utilization incorporated with an autoencoder-based deep neural networks (DNNs). To evaluate the proposed approach, real data measurements from an UAV communicating with base-stations within a commercial cellular network are obtained and used for training and validation. Numerical results demonstrate that the proposed method is accurate in channel acquisition for various UAV flying scenarios and outperforms the conventional DNNs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源