论文标题
很少混合学习
Learning with little mixing
论文作者
论文摘要
我们在具有Martingale差异噪声的可实现的时间序列框架中学习正方形损失。我们的主要结果是一个快速率的多余风险结合,这表明每当轨迹超收缩条件成立时,依赖数据的最小二乘估计器的风险与燃烧时间后的IID速率订单匹配。相比之下,从依赖数据中学习的许多现有结果都具有有效的样本量,即使在燃烧时间之后,有效的样本量也被基础过程的混合时间的因素放气。此外,我们的结果允许协变量过程表现出远距离相关性,而远程相关性比几何形状较弱。我们将这种现象学习称为几乎没有混合的方式,并在发生时呈现了几个示例:$ l^2 $和$ l^{2+ε} $规范是等效的,有限的Markov链,各种参数模型,各种无限$ \ ell^eell^2(Ell^2(ell^n})通过将我们的主要结果实例化,以使用广义线性模型过渡对非线性动力学的系统识别,我们仅在多项式燃烧时间后获得了几乎最小的最佳多余风险。
We study square loss in a realizable time-series framework with martingale difference noise. Our main result is a fast rate excess risk bound which shows that whenever a trajectory hypercontractivity condition holds, the risk of the least-squares estimator on dependent data matches the iid rate order-wise after a burn-in time. In comparison, many existing results in learning from dependent data have rates where the effective sample size is deflated by a factor of the mixing-time of the underlying process, even after the burn-in time. Furthermore, our results allow the covariate process to exhibit long range correlations which are substantially weaker than geometric ergodicity. We call this phenomenon learning with little mixing, and present several examples for when it occurs: bounded function classes for which the $L^2$ and $L^{2+ε}$ norms are equivalent, ergodic finite state Markov chains, various parametric models, and a broad family of infinite dimensional $\ell^2(\mathbb{N})$ ellipsoids. By instantiating our main result to system identification of nonlinear dynamics with generalized linear model transitions, we obtain a nearly minimax optimal excess risk bound after only a polynomial burn-in time.