论文标题

用预算模型的零拍动汽车

Zero-Shot AutoML with Pretrained Models

论文作者

Öztürk, Ekrem, Ferreira, Fabio, Jomaa, Hadi S., Schmidt-Thieme, Lars, Grabocka, Josif, Hutter, Frank

论文摘要

鉴于新的数据集D和低计算预算,我们应该如何选择预培训的模型来微调D,并设置微调的超参数而不冒险过度拟合,尤其是如果D小?在这里,我们扩展了自动化的机器学习(AUTOML),以最好地做出这些选择。我们与域无关的元学习方法学习了一个零射击的替代模型,在测试时,该模型允许选择正确的深度学习(DL)管道(包括预先训练的模型和新数据集体的微型模型和微调的超参数)D给出了仅给出的琐碎的元竞争,例如描述图像分辨率或类别的次数。为了训练这种零射模型,我们在大量数据集中收集了许多DL管道的性能数据,并在此数据上收集了元训练,以最大程度地减少成对排名目标。我们在Chalearn AutoDL挑战基准的视觉轨道的严格时间限制下评估我们的方法,显然超过了所有挑战竞争者。

Given a new dataset D and a low compute budget, how should we choose a pre-trained model to fine-tune to D, and set the fine-tuning hyperparameters without risking overfitting, particularly if D is small? Here, we extend automated machine learning (AutoML) to best make these choices. Our domain-independent meta-learning approach learns a zero-shot surrogate model which, at test time, allows to select the right deep learning (DL) pipeline (including the pre-trained model and fine-tuning hyperparameters) for a new dataset D given only trivial meta-features describing D such as image resolution or the number of classes. To train this zero-shot model, we collect performance data for many DL pipelines on a large collection of datasets and meta-train on this data to minimize a pairwise ranking objective. We evaluate our approach under the strict time limit of the vision track of the ChaLearn AutoDL challenge benchmark, clearly outperforming all challenge contenders.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源