论文标题
重新访问自我验证
Revisiting Self-Distillation
论文作者
论文摘要
知识蒸馏是将“知识”从大型模型(教师)转移到更紧凑的过程(学生)的过程,通常在模型压缩的背景下使用。当两个模型都具有相同的体系结构时,此过程称为自distillation。几项作品轶事表明,一个自养生的学生可以在持有数据上胜过老师。在这项工作中,我们系统地研究了许多设置。我们首先表明,即使有一个高度准确的老师,自我依据也使学生在所有情况下都可以超越老师。其次,我们重新审视了(自我)蒸馏的现有理论解释,并确定矛盾的例子,揭示了这些解释的可能缺点。最后,我们通过损失景观几何形状的镜头为自我鉴定的动态提供了另一种解释。我们进行了广泛的实验,以表明自我鉴定会导致最小的最小值,从而导致更好的概括。
Knowledge distillation is the procedure of transferring "knowledge" from a large model (the teacher) to a more compact one (the student), often being used in the context of model compression. When both models have the same architecture, this procedure is called self-distillation. Several works have anecdotally shown that a self-distilled student can outperform the teacher on held-out data. In this work, we systematically study self-distillation in a number of settings. We first show that even with a highly accurate teacher, self-distillation allows a student to surpass the teacher in all cases. Secondly, we revisit existing theoretical explanations of (self) distillation and identify contradicting examples, revealing possible drawbacks of these explanations. Finally, we provide an alternative explanation for the dynamics of self-distillation through the lens of loss landscape geometry. We conduct extensive experiments to show that self-distillation leads to flatter minima, thereby resulting in better generalization.