论文标题

超越脊回归以进行无分配数据

Beyond Ridge Regression for Distribution-Free Data

论文作者

Bibas, Koby, Feder, Meir

论文摘要

在监督的批处理学习中,已提出了预测性的最大可能性(PNML)作为无分配设置的最低最大遗憾解决方案,在数据上没有分配假设。但是,对于大容量假设类别,未定义PNML为过度参数的线性回归。对于大型班级来说,一种常见的方法是使用正则化或先验模型。在在线预测的背景下,最低最大解决方案是标准化的最大似然(NML),已建议将NML与``cultiness''一起使用:在假设类别上应用了类似于先前的函数,从而降低了其有效尺寸。受到幸运概念的激励,对于线性回归,我们结合了幸运功能,该功能与L2规范成比例地惩罚了假设。这导致了脊回归解决方案。相关的PNML与奇怪(LPNML)的预测偏离了山脊回归经验风险最小化器(RIDGE ERM):当测试数据位于子空间中,与相当于训练数据的经验相关性矩阵相对应的较小特征值的子空间中,预测到我们的lpnml refors and。与最近的UCI集合的主要领先方法相比,在分布变化的情况下,在存在分布的情况下,稳健性高达4.9%。

In supervised batch learning, the predictive normalized maximum likelihood (pNML) has been proposed as the min-max regret solution for the distribution-free setting, where no distributional assumptions are made on the data. However, the pNML is not defined for a large capacity hypothesis class as over-parameterized linear regression. For a large class, a common approach is to use regularization or a model prior. In the context of online prediction where the min-max solution is the Normalized Maximum Likelihood (NML), it has been suggested to use NML with ``luckiness'': A prior-like function is applied to the hypothesis class, which reduces its effective size. Motivated by the luckiness concept, for linear regression we incorporate a luckiness function that penalizes the hypothesis proportionally to its l2 norm. This leads to the ridge regression solution. The associated pNML with luckiness (LpNML) prediction deviates from the ridge regression empirical risk minimizer (Ridge ERM): When the test data reside in the subspace corresponding to the small eigenvalues of the empirical correlation matrix of the training data, the prediction is shifted toward 0. Our LpNML reduces the Ridge ERM error by up to 20% for the PMLB sets, and is up to 4.9% more robust in the presence of distribution shift compared to recent leading methods for UCI sets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源