论文标题

高斯流程的浅而深的非参数卷积

Shallow and Deep Nonparametric Convolutions for Gaussian Processes

论文作者

McDonald, Thomas M., Ross, Magnus, Smith, Michael T., Álvarez, Mauricio A.

论文摘要

高斯流程(GPS)实际应用的主要挑战是选择适当的协方差函数。 GPS的移动平均值或过程卷积的构建可以提供一些额外的灵活性,但仍需要选择合适的平滑核,这是非平凡的。以前的方法通过在平滑内核上使用GP先验,并通过扩展协方差来构建协方差函数,以绕过预先指定它的需求。但是,这样的模型在几种方面受到限制:它们仅限于单维输入,例如时间;它们仅允许对单个输出进行建模,并且由于推理并不简单,因此不会扩展到大型数据集。在本文中,我们引入了GPS的非参数过程卷积公式,该公式通过使用基于Matheron规则的功能采样方法来减轻这些弱点,以使用诱导变量诱导变量的间域进行快速采样。此外,我们提出了这些非参数卷积的组成,可作为经典深度GP模型的替代方案,并允许从数据中推断中间层的协方差函数。我们测试了单个输出GP,多个输出GPS和DEEP GPS在基准测试上的模型的性能,发现我们的方法可以比标准GP模型,尤其是大型数据集提供改进。

A key challenge in the practical application of Gaussian processes (GPs) is selecting a proper covariance function. The moving average, or process convolutions, construction of GPs allows some additional flexibility, but still requires choosing a proper smoothing kernel, which is non-trivial. Previous approaches have built covariance functions by using GP priors over the smoothing kernel, and by extension the covariance, as a way to bypass the need to specify it in advance. However, such models have been limited in several ways: they are restricted to single dimensional inputs, e.g. time; they only allow modelling of single outputs and they do not scale to large datasets since inference is not straightforward. In this paper, we introduce a nonparametric process convolution formulation for GPs that alleviates these weaknesses by using a functional sampling approach based on Matheron's rule to perform fast sampling using interdomain inducing variables. Furthermore, we propose a composition of these nonparametric convolutions that serves as an alternative to classic deep GP models, and allows the covariance functions of the intermediate layers to be inferred from the data. We test the performance of our model on benchmarks for single output GPs, multiple output GPs and deep GPs and find that our approach can provide improvements over standard GP models, particularly for larger datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源