论文标题

模拟金属芯壳纳米颗粒中的辐射阻力

Radiation resistance in simulated metallic core-shell nanoparticles

论文作者

Tramontina, D. R., Deluigi, O. R., Pinzon, R., Rojas-Nuñez, J., Valencia, F. J., Pasianot, R. C., Baltazar, S. E., Gonzalez, R. I., Bringa, E. M.

论文摘要

我们提出了纯Fe纳米颗粒(NP)和双金属FECU核心壳纳米颗粒(CSNP)的辐射损伤的分子动力学(MD)。 CSNP包括一个完美的身体中心立方(BCC)Fe核心,涂有面部中心的立方体(FCC)CU壳。用Fe初级敲门原子(PKA)的辐照在1到7个KEV之间的能量会导致点缺陷,而不会超越Divacancies,并且很少有稍大的空位簇,而没有间隙簇,而没有与同一PKA能量的散装群体不同。 Fe-Cu界面和壳可以充当缺陷下沉,吸收辐射诱导的损伤,因此,Fe核心中最终的缺陷数量明显低于Fe NP。此外,Cu壳显然减少了溅射Fe原子的数量,充当后坐力弹出的障碍。从结构上讲,Cu壳通过造成和破坏壳宽度上的堆叠断层而响应碰撞级联产生的应力,这也可以适应进一步的照射缺陷。 BCA低估了溅射产率(Y),这也可以预期,因为该模拟是在正常发射率下用于薄膜。我们还将MD缺陷的产生与每个原子(ARC-DPA)模型的分析性疾病重组校正位移的大量预测进行了比较。 Fe核心中空缺的数量仅略低于ARC-DPA预测,但是与空位相比,在5 KEV处,间质数量减少了约一个数量级。根据在我们的模拟中发现FECU CSNP的辐射抗性,这类纳米材料可能适合开发新的耐药涂层涂层,纳米结构成分和用于在极端环境中的盾牌,例如在核能和天文学应用中。

We present molecular dynamics (MD) simulations of radiation damage in pure Fe nanoparticles (NP) and bimetallic FeCu core-shell nanoparticles (CSNP). The CSNP includes a perfect body centered cubic (bcc) Fe core coated with a face-centered cubic (fcc) Cu shell. Irradiation with Fe Primary Knock-on Atoms (PKA) with energies between 1 and 7 keV leads to point defects, without clustering beyond divacancies and very few slightly larger vacancy clusters, and without interstitial clusters, unlike what happens in bulk at the same PKA energies. The Fe-Cu interface and shell can act as a defect sink, absorbing radiation-induced damage and, therefore, the final number of defects in the Fe core is significantly lower than in the Fe NP. In addition, the Cu shell substantially diminishes the number of sputtered Fe atoms, acting as a barrier for recoil ejection. Structurally, the Cu shell responds to the stress generated by the collision cascade by creating and destroying stacking faults across the shell width, which could also accommodate further irradiation defects. Sputtering yield (Y) is underestimated by BCA, which is also expected since the simulation is for a thin film at normal incidence. We also compare MD defect production to bulk predictions of the analytic Athermal Recombination Corrected Displacements Per Atom (arc-dpa) model. The number of vacancies in the Fe core is only slightly lower than arc-dpa predictions, but the number of interstitials is reduced by about one order of magnitude compared to vacancies, at 5 keV. According to the radiation resistance found for FeCu CSNP in our simulations, this class of nanomaterial could be suitable for developing new radiation resistant coatings, nanostructured components, and shields for use in extreme environments, for instance, in nuclear energy and astrophysical applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源