论文标题

具有不确定性定量的非参数多形建模

Nonparametric Multi-shape Modeling with Uncertainty Quantification

论文作者

Luo, Hengrui, Strait, Justin D.

论文摘要

封闭曲线的建模和不确定性量化是形状分析领域的重要问题,并且可以对随后的统计任务产生重大影响。这些任务中的许多涉及封闭曲线的集合,这些曲线通常在多个层面上表现出结构相似性。以有效纳入这种曲线间依赖性的方式对多个封闭曲线进行建模仍然是一个具有挑战性的问题。在这项工作中,我们提出并研究了一个多票(又称多输出),多维高斯过程建模框架。我们说明了提出的方法学进步,并在几个曲线和形状相关的任务上证明了有意义的不确定性量化的实用性。这种基于模型的方法不仅解决了用内核构造对封闭曲线(及其形状)推断的问题,而且还为通常的功能对象的多级依赖性依赖性的非参数建模打开了门。

The modeling and uncertainty quantification of closed curves is an important problem in the field of shape analysis, and can have significant ramifications for subsequent statistical tasks. Many of these tasks involve collections of closed curves, which often exhibit structural similarities at multiple levels. Modeling multiple closed curves in a way that efficiently incorporates such between-curve dependence remains a challenging problem. In this work, we propose and investigate a multiple-output (a.k.a. multi-output), multi-dimensional Gaussian process modeling framework. We illustrate the proposed methodological advances, and demonstrate the utility of meaningful uncertainty quantification, on several curve and shape-related tasks. This model-based approach not only addresses the problem of inference on closed curves (and their shapes) with kernel constructions, but also opens doors to nonparametric modeling of multi-level dependence for functional objects in general.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源