论文标题
风格单体的身份
Identities of the stylic monoid
论文作者
论文摘要
我们观察到,对于每个$ n \ ge 2 $,与$ n $生成器的样式单体的身份相吻合,与$ n $生成的$ n $生成的单体相吻合,来自其他杰出的$ \ mathscr {j} $ - 琐事 - 琐碎的单型单体,例如,在文献中,例如,Catalan Monoids和Kiselman Monoids和Kiselman Monoids。这解决了定型单体的有限基础问题。
We observe that for each $n\ge 2$, the identities of the stylic monoid with $n$ generators coincide with the identities of $n$-generated monoids from other distinguished series of $\mathscr{J}$-trivial monoids studied in the literature, e.g., Catalan monoids and Kiselman monoids. This solves the Finite Basis Problem for stylic monoids.