论文标题

可逆图扩散神经网络,用于源本地化

An Invertible Graph Diffusion Neural Network for Source Localization

论文作者

Wang, Junxiang, Jiang, Junji, Zhao, Liang

论文摘要

将图形扩散现象的来源定位,例如错误信息传播,是一项重要但极具挑战性的任务。现有的源本地化模型通常在很大程度上取决于手工制作的规则。不幸的是,许多应用程序的图形扩散过程的很大一部分仍然是人类未知的,因此具有自动学习此类基础规则的表达模型很重要。本文旨在建立一个可逆的图形扩散模型的通用框架,以在图形上定位,即可逆有效性吸引的图形扩散(IVGD),以应对主要挑战,包括1)在图形扩散模型中杠杆知识的困难,以确保其端到端的效率和量表的效率和量表的范围,并确保范围的效率和3)。具体而言,首先,为了反向推断图形扩散的来源,我们提出了一个图形残差方案,以使现有的图形扩散模型具有理论保证。其次,我们开发了一种新颖的错误补偿机制,该机制学会抵消推断来源的错误。最后,为了确保推断资源的有效性,通过灵活地通过使用展开的优化技术来灵活地编码约束来,已经设计了一组新的有效性感知层将推断为可行区域的源。提出了一种线性化技术来增强我们提出的层的效率。理论上证明了所提出的IVGD的收敛性。对九个现实世界数据集进行的广泛实验表明,我们提出的IVGD的表现明显优于最先进的比较方法。我们已经在https://github.com/xianggebenben/ivgd上发布了代码。

Localizing the source of graph diffusion phenomena, such as misinformation propagation, is an important yet extremely challenging task. Existing source localization models typically are heavily dependent on the hand-crafted rules. Unfortunately, a large portion of the graph diffusion process for many applications is still unknown to human beings so it is important to have expressive models for learning such underlying rules automatically. This paper aims to establish a generic framework of invertible graph diffusion models for source localization on graphs, namely Invertible Validity-aware Graph Diffusion (IVGD), to handle major challenges including 1) Difficulty to leverage knowledge in graph diffusion models for modeling their inverse processes in an end-to-end fashion, 2) Difficulty to ensure the validity of the inferred sources, and 3) Efficiency and scalability in source inference. Specifically, first, to inversely infer sources of graph diffusion, we propose a graph residual scenario to make existing graph diffusion models invertible with theoretical guarantees; second, we develop a novel error compensation mechanism that learns to offset the errors of the inferred sources. Finally, to ensure the validity of the inferred sources, a new set of validity-aware layers have been devised to project inferred sources to feasible regions by flexibly encoding constraints with unrolled optimization techniques. A linearization technique is proposed to strengthen the efficiency of our proposed layers. The convergence of the proposed IVGD is proven theoretically. Extensive experiments on nine real-world datasets demonstrate that our proposed IVGD outperforms state-of-the-art comparison methods significantly. We have released our code at https://github.com/xianggebenben/IVGD.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源