论文标题

在物理知识的神经网络中执行连续对称性,以解决部分微分方程的向前和反面问题

Enforcing continuous symmetries in physics-informed neural network for solving forward and inverse problems of partial differential equations

论文作者

Zhang, Zhi-Yong, Zhang, Hui, Zhang, Li-Sheng, Guo, Lei-Lei

论文摘要

作为深度学习的典型应用,物理知识的神经网络(PINN){已成功用于找到偏微分方程(PDES)的数值解决方案(PDES),但是如何提高有限准确性仍然是PINN的巨大挑战。在这项工作中,我们介绍了一种新方法,对称性化物理学知情的神经网络(SPINN),其中lie对称性或PDE的非经典性对称性诱导的表面条件嵌入了PINN中的损失功能,以提高PINN的准确性,以求解PDES的前进和反向问题的准确性。我们通过两组十组通过十组独立的数值实验来测试SPINN的有效性,该实验分别使用不同数量的搭配点和神经元来进行热方程,Korteweg-de Vries(KDV)方程(KDV)方程和潜在的汉堡{等式} {等式},并通过考虑不同的层和神经元以及不同的培训点来考虑伯格斯方程的不同层次和神经元的反向问题。数值结果表明,Spinn的性能要比PINN更好,而神经网络的训练点和更简单的结构。此外,我们讨论了Spinn的计算开销,以PINN的相对计算成本,并表明Spinn的训练时间没有明显的增加,甚至在某些情况下都比PINN少。

As a typical application of deep learning, physics-informed neural network (PINN) {has been} successfully used to find numerical solutions of partial differential equations (PDEs), but how to improve the limited accuracy is still a great challenge for PINN. In this work, we introduce a new method, symmetry-enhanced physics informed neural network (SPINN) where the invariant surface conditions induced by the Lie symmetries or non-classical symmetries of PDEs are embedded into the loss function in PINN, to improve the accuracy of PINN for solving the forward and inverse problems of PDEs. We test the effectiveness of SPINN for the forward problem via two groups of ten independent numerical experiments using different numbers of collocation points and neurons for the heat equation, Korteweg-de Vries (KdV) equation and potential Burgers {equations} respectively, and for the inverse problem by considering different layers and neurons as well as different training points for the Burgers equation in potential form. The numerical results show that SPINN performs better than PINN with fewer training points and simpler architecture of neural network. Furthermore, we discuss the computational overhead of SPINN in terms of the relative computational cost to PINN and show that the training time of SPINN has no obvious increases, even less than PINN for certain cases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源