论文标题

可扩展的神经数据服务器:推荐转移学习的数据

Scalable Neural Data Server: A Data Recommender for Transfer Learning

论文作者

Cao, Tianshi, Doubov, Sasha, Acuna, David, Fidler, Sanja

论文摘要

在实践中,在实践中应用机器学习算法的瓶颈缺乏大规模标记的数据。转移学习是利用其他数据来改善下游性能的流行策略,但是找到最相关的数据可能是具有挑战性的。神经数据服务器(NDS)是一种建议针对给定下游任务的相关数据的搜索引擎,以前已提出解决此问题。 NDS使用经过数据源培训的专家组合,以估计每个源和下游任务之间的相似性。因此,每个用户的计算成本都随源数量而增长。为了解决这些问题,我们提出了可扩展的神经数据服务器(SND),这是一种大规模搜索引擎,理论上可以索引数千个数据集以将相关的ML数据提供给最终用户。 SND在初始化过程中训练专家在中介数据集上的混合物,并通过与中间数据集的近距离表示数据源和下游任务。因此,随着新数据集添加到服务器中,SNDS用户产生的计算成本仍然固定。我们验证SND在许多现实世界任务上,发现SNDS推荐的数据改善了基线的下游任务性能。我们还通过显示其选择相关数据以在自然图像设置之外传输的能力来证明SND的可伸缩性。

Absence of large-scale labeled data in the practitioner's target domain can be a bottleneck to applying machine learning algorithms in practice. Transfer learning is a popular strategy for leveraging additional data to improve the downstream performance, but finding the most relevant data to transfer from can be challenging. Neural Data Server (NDS), a search engine that recommends relevant data for a given downstream task, has been previously proposed to address this problem. NDS uses a mixture of experts trained on data sources to estimate similarity between each source and the downstream task. Thus, the computational cost to each user grows with the number of sources. To address these issues, we propose Scalable Neural Data Server (SNDS), a large-scale search engine that can theoretically index thousands of datasets to serve relevant ML data to end users. SNDS trains the mixture of experts on intermediary datasets during initialization, and represents both data sources and downstream tasks by their proximity to the intermediary datasets. As such, computational cost incurred by SNDS users remains fixed as new datasets are added to the server. We validate SNDS on a plethora of real world tasks and find that data recommended by SNDS improves downstream task performance over baselines. We also demonstrate the scalability of SNDS by showing its ability to select relevant data for transfer outside of the natural image setting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源