论文标题

通过预测空间贝叶斯推断,强大的一轮联合学习

Robust One Round Federated Learning with Predictive Space Bayesian Inference

论文作者

Hasan, Mohsin, Zhang, Zehao, Guo, Kaiyang, Karami, Mahdi, Zhang, Guojun, Chen, Xi, Poupart, Pascal

论文摘要

做出强大的预测是一个重要的挑战。联邦学习(FL)中的一个单独挑战是减少交流回合的数量,尤其是因为这样做会降低异质数据设置的性能。为了解决这两个问题,我们对学习全球模型的问题有贝叶斯的看法。我们展示了如何使用客户预测后代近似全局预测后验。这与其他作品不同,该作品将局部模型空间后代汇总到全球模型空间后部,并且由于后验的高维多模式性质而易受高近似误差的影响。相比之下,我们的方法对预测后期进行了聚集,由于输出空间的低维度,通常更容易近似。我们基于此想法提出了一种算法,该算法在每个客户端对MCMC进行了采样,以获得局部后验的估计,然后在一轮中汇总这些估计以获得全局合奏模型。通过对多个分类和回归任务的经验评估,我们表明,尽管使用了一轮通信,但该方法与其他FL技术具有竞争力,并且在异质环境上的表现优于它们。该代码可在https://github.com/hasanmohsin/fedpredpace_1 round上公开获取。

Making predictions robust is an important challenge. A separate challenge in federated learning (FL) is to reduce the number of communication rounds, particularly since doing so reduces performance in heterogeneous data settings. To tackle both issues, we take a Bayesian perspective on the problem of learning a global model. We show how the global predictive posterior can be approximated using client predictive posteriors. This is unlike other works which aggregate the local model space posteriors into the global model space posterior, and are susceptible to high approximation errors due to the posterior's high dimensional multimodal nature. In contrast, our method performs the aggregation on the predictive posteriors, which are typically easier to approximate owing to the low-dimensionality of the output space. We present an algorithm based on this idea, which performs MCMC sampling at each client to obtain an estimate of the local posterior, and then aggregates these in one round to obtain a global ensemble model. Through empirical evaluation on several classification and regression tasks, we show that despite using one round of communication, the method is competitive with other FL techniques, and outperforms them on heterogeneous settings. The code is publicly available at https://github.com/hasanmohsin/FedPredSpace_1Round.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源