论文标题
使用混合CPU-FPGA方法的量子AI模拟器
Quantum AI simulator using a hybrid CPU-FPGA approach
论文作者
论文摘要
量子内核方法在量子机学习领域引起了极大的关注。但是,探索量子内核在更现实的设置中的适用性受到了当前噪声量子计算机的物理量子数量的阻碍,从而限制了编码量子内核的功能数量。因此,需要使用经典技术进行高效的,特定于应用程序的模拟器来进行量子计算。在这里,我们重点介绍用于图像分类的经验设计的量子内核,并演示一个现场可编程门阵列(FPGA)实现。我们表明,我们的异质CPU-FPGA计算的量子内核估计比常规CPU实现快470倍。我们的应用特定量子内核的共同设计及其有效的FPGA实现使我们能够以多达780维的特征来执行基于门的量子内核的最大数值模拟之一。我们将量子内核应用于使用Fashion-Mnist数据集的分类任务,并表明我们的量子内核与具有优化的超参数的高斯内核可比。
The quantum kernel method has attracted considerable attention in the field of quantum machine learning. However, exploring the applicability of quantum kernels in more realistic settings has been hindered by the number of physical qubits current noisy quantum computers have, thereby limiting the number of features encoded for quantum kernels. Hence, there is a need for an efficient, application-specific simulator for quantum computing by using classical technology. Here we focus on quantum kernels empirically designed for image classification and demonstrate a field programmable gate arrays (FPGA) implementation. We show that the quantum kernel estimation by our heterogeneous CPU-FPGA computing is 470 times faster than that by a conventional CPU implementation. The co-design of our application-specific quantum kernel and its efficient FPGA implementation enabled us to perform one of the largest numerical simulations of a gate-based quantum kernel in terms of features, up to 780-dimensional features. We apply our quantum kernel to classification tasks using Fashion-MNIST dataset and show that our quantum kernel is comparable to Gaussian kernels with the optimized hyperparameter.