论文标题

参数化量子电路的经典分裂

Classical Splitting of Parametrized Quantum Circuits

论文作者

Tüysüz, Cenk, Clemente, Giuseppe, Crippa, Arianna, Hartung, Tobias, Kühn, Stefan, Jansen, Karl

论文摘要

贫瘠的高原似乎是使用变分量子算法模拟大规模量子系统或取代传统机器学习算法的主要障碍。它们可能是由多种因素引起的,例如表达,纠缠,可观察到的局部性甚至硬件噪声。我们提出了Ansätze或参数化量子电路的经典分裂,以避免贫瘠的高原。通过将$ n $ Qubit Ansatz分开到由$ \ MATHCAL {O}(\ log N)$ Qubits组成的多个Ansätze来实现经典分裂。我们表明,这样的安萨兹可用于避免贫瘠的高原。我们通过数值实验支持我们的结果,并在经典和量子数据集上执行二进制分类。然后,我们提出了与变异量子模拟兼容的ANSATZ的扩展。最后,我们讨论了基于梯度的优化和硬件实现的速度,对噪声和并行化的鲁棒性,使经典拆分成为嘈杂的中间尺度量子(NISQ)应用程序的理想工具。

Barren plateaus appear to be a major obstacle to using variational quantum algorithms to simulate large-scale quantum systems or replace traditional machine learning algorithms. They can be caused by multiple factors such as expressivity, entanglement, locality of observables, or even hardware noise. We propose classical splitting of ansätze or parametrized quantum circuits to avoid barren plateaus. Classical splitting is realized by splitting an $N$ qubit ansatz to multiple ansätze that consists of $\mathcal{O}(\log N)$ qubits. We show that such an ansatz can be used to avoid barren plateaus. We support our results with numerical experiments and perform binary classification on classical and quantum datasets. Then, we propose an extension of the ansatz that is compatible with variational quantum simulations. Finally, we discuss a speed-up for gradient-based optimization and hardware implementation, robustness against noise and parallelization, making classical splitting an ideal tool for noisy intermediate scale quantum (NISQ) applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源