论文标题

超越IID:在异质环境中以数据为导向的决策

Beyond IID: data-driven decision-making in heterogeneous environments

论文作者

Besbes, Omar, Ma, Will, Mouchtaki, Omar

论文摘要

当过去的观察结果并不能完美地表明未来时,例如由于存在未观察到的混杂因素,人们应该如何利用历史数据?在这个问题的推动下,我们研究了一个数据驱动的决策框架,其中将历史样本从未知和不同的分布中产生,假定位于具有已知半径的异质性球,并以(也是)未知的未来(未知)(样本外)分布为中心,该分布将评估决策的表现。这项工作旨在分析中央数据驱动的策略的绩效,但在这些异质环境中也几乎是最理想的政策,并了解绩效的关键驱动力。我们建立了第一个结果,该结果允许在广泛的政策上束缚渐近性最差的遗憾。利用此结果,对于任何积分概率度量,我们提供了对样品平均近似(SAA)实现的性能的一般分析,这是异质性球半径的函数。该分析以近似参数为中心,我们引入的复杂性概念是为了捕获异质性与问题结构之间的相互作用如何影响SAA的性能。反过来,我们通过几个广泛研究的问题(例如,新闻供应商,定价)来说明如何应用此方法,并发现SAA的性能取决于问题类别和异质性的组合。 SAA在某些情况下的失败激发了替代政策的设计,以实现速率优势。我们得出了与问题依赖性的政策,为上述说明性问题实现了强大的保证,并为一种原则上的方法提供了最初的结果,以设计和分析一般速率优势算法。

How should one leverage historical data when past observations are not perfectly indicative of the future, e.g., due to the presence of unobserved confounders which one cannot "correct" for? Motivated by this question, we study a data-driven decision-making framework in which historical samples are generated from unknown and different distributions assumed to lie in a heterogeneity ball with known radius and centered around the (also) unknown future (out-of-sample) distribution on which the performance of a decision will be evaluated. This work aims at analyzing the performance of central data-driven policies but also near-optimal ones in these heterogeneous environments and understanding key drivers of performance. We establish a first result which allows to upper bound the asymptotic worst-case regret of a broad class of policies. Leveraging this result, for any integral probability metric, we provide a general analysis of the performance achieved by Sample Average Approximation (SAA) as a function of the radius of the heterogeneity ball. This analysis is centered around the approximation parameter, a notion of complexity we introduce to capture how the interplay between the heterogeneity and the problem structure impacts the performance of SAA. In turn, we illustrate through several widely-studied problems -- e.g., newsvendor, pricing -- how this methodology can be applied and find that the performance of SAA varies considerably depending on the combinations of problem classes and heterogeneity. The failure of SAA for certain instances motivates the design of alternative policies to achieve rate-optimality. We derive problem-dependent policies achieving strong guarantees for the illustrative problems described above and provide initial results towards a principled approach for the design and analysis of general rate-optimal algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源