论文标题
纠缠辅助和子系统量子代码:新的传播规则和构造
Entanglement-Assisted and Subsystem Quantum Codes: New Propagation Rules and Constructions
论文作者
论文摘要
本文提出了有关纠缠辅助和量子子系统场景中量子代码的新传播规则。这些规则导致了此类量子代码的新家族,其参数明显是最佳的。为了获得结果,我们设计了以确保其隐居船体具有某些理想特性的方式刺穿和缩短代码的工具。更具体地说,我们提供了一个通用框架,以构建$ K $维的一般性芦苇 - 固体代码,其Hermitian船体为$(K-1)$ - 维度最大距离可分开代码。
This paper proposes new propagation rules on quantum codes in the entanglement-assisted and in quantum subsystem scenarios. The rules lead to new families of such quantum codes whose parameters are demonstrably optimal. To obtain the results, we devise tools to puncture and shorten codes in ways that ensure their Hermitian hulls have certain desirable properties. More specifically, we give a general framework to construct $k$-dimensional generalized Reed-Solomon codes whose Hermitian hulls are $(k-1)$-dimensional maximum distance separable codes.