论文标题

在仿生无人机中进行惯性操纵的四元变化整合

Quaternion variational integration for inertial maneuvering in a biomimetic UAV

论文作者

Pons, Arion, Cirak, Fehmi

论文摘要

生物飞行,滑行和掉落的生物能够具有非凡形式的惯性操纵形式:基于对其多体动力学的精细控制的自由空间操纵,这是猫的自我望去反射的特征。但是,将惯性的机动能力设计成仿生机器人,例如仿生无人机(UAV)是具有挑战性的。准确地模拟此操作需要数值集成符,以确保在强耦合系统中既可以确保无奇异性集成,又可以确保动量和能量保护 - 在现有的常规集成商中不可用的属性。在这项工作中,我们开发了一对新型的四元变化积分器(QVIS),显示了这些特性,并证明了它们在仿生无人机中模拟惯性操作的能力,显示了复杂的多种动力学耦合。这些Qvis被估算为Quternion,天生没有奇异性。它们是变异的,它们可以表现出出色的能量和动量保护特性。我们探讨了变分积分顺序(左矩形与中点)对集成器的保护特性的影响,并得出结论,在复杂的耦合系统中,规范矩可能会随时间变化,需要中点积分器。所得的中点QVI非常适合分析仿生无人机中的惯性操纵 - 我们在仿真和其他复杂的动力系统中所证明的功能。

Biological flying, gliding, and falling creatures are capable of extraordinary forms of inertial maneuvering: free-space maneuvering based on fine control of their multibody dynamics, as typified by the self-righting reflexes of cats. However, designing inertial maneuvering capability into biomimetic robots, such as biomimetic unmanned aerial vehicles (UAVs) is challenging. Accurately simulating this maneuvering requires numerical integrators that can ensure both singularity-free integration, and momentum and energy conservation, in a strongly coupled system - properties unavailable in existing conventional integrators. In this work, we develop a pair of novel quaternion variational integrators (QVIs) showing these properties, and demonstrate their capability for simulating inertial maneuvering in a biomimetic UAV showing complex multibody-dynamics coupling. Being quaternion-valued, these QVIs are innately singularity-free; and being variational, they can show excellent energy and momentum conservation properties. We explore the effect of variational integration order (left-rectangle vs. midpoint) on the conservation properties of integrator, and conclude that, in complex coupled systems in which canonical momenta may be time-varying, the midpoint integrator is required. The resulting midpoint QVI is well-suited to the analysis of inertial maneuvering in a biomimetic UAV - a feature that we demonstrate in simulation - and of other complex dynamical systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源