论文标题

从异质和部分观察到的基因组数据中人类造血系统的稀疏推断

Sparse inference of the human hematopoietic system from heterogeneous and partially observed genomic data

论文作者

Sottile, Gianluca, Augugliaro, Luigi, Vinciotti, Veronica, Arancio, Walter, Coronnello, Claudia

论文摘要

造血是血细胞形成的过程,祖细胞细胞分化为成熟形式,例如白色和红细胞或成熟的血小板。尽管成熟形式的前体具有许多涉及常见细胞核因子的调节途径,但调节的特定网络将其命运朝向一个或另一个谱系。在这项研究中,我们旨在分析复杂的调节网络,该网络驱动成熟的红细胞和血小板的共同前体的形成。为此,我们开发了一个专用的图形模型,我们从最新的RT-QPCR基因组数据中推断出来。该模型还解释了外部基因组数据的影响。一种计算有效的期望最大化算法允许从高维且通常仅部分观察到的RT-QPCR数据中的正则化网络推断。乘数算法的交替方向方法的仔细组合允许在单个谱系网络中实现稀疏性以及这些网络之间的高共享,以及检测到膜结合受体与核因子之间的关联。该方法将在R软件包CGlasso中实现,可用于从高维,异质和部分观察到的数据进行网络推理的类似应用中。

Hematopoiesis is the process of blood cell formation, through which progenitor stem cells differentiate into mature forms, such as white and red blood cells or mature platelets. While the precursors of the mature forms share many regulatory pathways involving common cellular nuclear factors, specific networks of regulation shape their fate towards one lineage or another. In this study, we aim to analyse the complex regulatory network that drives the formation of mature red blood cells and platelets from their common precursor. To this aim, we develop a dedicated graphical model which we infer from the latest RT-qPCR genomic data. The model also accounts for the effect of external genomic data. A computationally efficient Expectation-Maximization algorithm allows regularised network inference from the high-dimensional and often only partially observed RT-qPCR data. A careful combination of alternating direction method of multipliers algorithms allows achieving sparsity in the individual lineage networks and a high sharing between these networks, together with the detection of the associations between the membrane-bound receptors and the nuclear factors. The approach will be implemented in the R package cglasso and can be used in similar applications where network inference is conducted from high-dimensional, heterogeneous and partially observed data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源