论文标题

通过表示相似性了解强大的学习

Understanding Robust Learning through the Lens of Representation Similarities

论文作者

Cianfarani, Christian, Bhagoji, Arjun Nitin, Sehwag, Vikash, Zhao, Ben Y., Mittal, Prateek, Zheng, Haitao

论文摘要

代表学习,即对下游应用有用的表示形式的产生,是一项基本重要性的任务,是深层神经网络(DNNS)成功的基础。最近,对对抗性例子的鲁棒性已成为DNN的理想特性,促使开发了构成对抗性例子的强大训练方法。在本文中,我们旨在了解通过鲁棒培训所学到的表示的特性与从标准的,非运动培训获得的培训的特性不同。这对于诊断稳健网络中的众多显着陷阱至关重要,例如,良性输入的性能降解,鲁棒性的概括不良以及过度拟合的增加。我们利用一组强大的工具在三个视觉数据集中被称为表示相似性指标,以通过不同的训练过程,体系结构参数和对抗性约束来获得稳健和非舒适DNN之间的层次比较。我们的实验突出显示了迄今为止鲁棒表示的属性,我们认为这是强大网络的行为差异的基础。我们发现在强大的网络的表示中缺乏专业化以及“块结构”的消失。我们还发现在强大的训练中过度拟合会在很大程度上影响更深的层。这些以及其他发现还为更好的健壮网络的设计和培训提出了前进的方向。

Representation learning, i.e. the generation of representations useful for downstream applications, is a task of fundamental importance that underlies much of the success of deep neural networks (DNNs). Recently, robustness to adversarial examples has emerged as a desirable property for DNNs, spurring the development of robust training methods that account for adversarial examples. In this paper, we aim to understand how the properties of representations learned by robust training differ from those obtained from standard, non-robust training. This is critical to diagnosing numerous salient pitfalls in robust networks, such as, degradation of performance on benign inputs, poor generalization of robustness, and increase in over-fitting. We utilize a powerful set of tools known as representation similarity metrics, across three vision datasets, to obtain layer-wise comparisons between robust and non-robust DNNs with different training procedures, architectural parameters and adversarial constraints. Our experiments highlight hitherto unseen properties of robust representations that we posit underlie the behavioral differences of robust networks. We discover a lack of specialization in robust networks' representations along with a disappearance of `block structure'. We also find overfitting during robust training largely impacts deeper layers. These, along with other findings, suggest ways forward for the design and training of better robust networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源