论文标题
多项式投票规则
Polynomial Voting Rules
论文作者
论文摘要
我们建议并研究一类新的多项式投票规则,针对一般分散的决策/共识系统,更具体地针对POS(持有权限)协议。受Penrose Square-Root法律的启发和最新的二次投票规则的启发,主要思想是区分选民的投票权和选民的份额(系统中总数的一部分)。我们表明,虽然选民股票构成了汇聚与迪利奇分布的群众流程,但他们的投票权遵循了超级马丁加的进程,随着时间的流逝,该过程衰减降至零。这样可以防止任何选民控制投票过程,从而增强安全性。对于两个限制结果,我们还提供明确的收敛速度。当最初的投票总量(或股份)很大时,我们显示出股份稳定性(或缺乏股份)的相变,与选民相对于总数的初始份额对应。我们还研究了允许选民之间(投票/利益)交易的情况,并在三类中量化风险敏感性(或避开风险)的水平,对应于选民的效用是超级婚姻,次级婚姻,次生派和狂欢者。对于每个类别,我们在参与和交易方面确定选民的最佳策略。
We propose and study a new class of polynomial voting rules for a general decentralized decision/consensus system, and more specifically for the PoS (Proof of Stake) protocol. The main idea, inspired by the Penrose square-root law and the more recent quadratic voting rule, is to differentiate a voter's voting power and the voter's share (fraction of the total in the system). We show that while voter shares form a martingale process that converge to a Dirichlet distribution, their voting powers follow a super-martingale process that decays to zero over time. This prevents any voter from controlling the voting process, and thus enhances security. For both limiting results, we also provide explicit rates of convergence. When the initial total volume of votes (or stakes) is large, we show a phase transition in share stability (or the lack thereof), corresponding to the voter's initial share relative to the total. We also study the scenario in which trading (of votes/stakes) among the voters is allowed, and quantify the level of risk sensitivity (or risk averse) in three categories, corresponding to the voter's utility being a super-martingale, a sub-martingale, and a martingale. For each category, we identify the voter's best strategy in terms of participation and trading.