论文标题

$ l_p $ - norm球形鸡冠

$L_p$-norm spherical copulas

论文作者

Bernard, Carole, Müller, Alfred, Oesting, Marco

论文摘要

在本文中,我们研究了[1,\ infty] $和任意维度的任意$ p \的$ l_p $ -norm球形copulas。这项研究是出于猜想的激励,即这些分布导致了特定的普遍均值差异的急剧结合。我们充分表征了$ l_p $ -norm球形Copulas的存在和独特性的条件。得出了其密度和相关系数的显式公式,并确定了径向部分的分布。此外,考虑了统计推断和有效的模拟。

In this paper we study $L_p$-norm spherical copulas for arbitrary $p \in [1,\infty]$ and arbitrary dimensions. The study is motivated by a conjecture that these distributions lead to a sharp bound for the value of a certain generalized mean difference. We fully characterize conditions for existence and uniqueness of $L_p$-norm spherical copulas. Explicit formulas for their densities and correlation coefficients are derived and the distribution of the radial part is determined. Moreover, statistical inference and efficient simulation are considered.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源