论文标题

Semmae:学习蒙版自动编码器的语义引导掩蔽

SemMAE: Semantic-Guided Masking for Learning Masked Autoencoders

论文作者

Li, Gang, Zheng, Heliang, Liu, Daqing, Wang, Chaoyue, Su, Bing, Zheng, Changwen

论文摘要

最近,在蒙版的图像建模中取得了重大进展,以赶上掩盖语言建模。但是,与NLP中的单词不同,图像的语义分解仍然使视觉和语言之间的掩盖自动编码(MAE)不同。在本文中,我们探讨了单词的潜在视觉类似物,即语义部分,并通过提出语义引导的掩盖策略将语义信息整合到MAE的训练过程中。与广泛采用的随机掩蔽相比,我们的掩蔽策略可以逐渐指导网络学习各种信息,即从部分内部模式到零件间的关系。特别是,我们通过两个步骤实现这一目标。 1)语义部分学习:我们设计了一种自制的部分学习方法,通过利用和完善基于VIT的编码器的多头注意来获得语义部分。 2)语义引导的MAE(SEMMAE)训练:我们设计了一种掩盖策略,该策略从掩盖每个部分中的一部分贴片到掩盖图像中的一部分(整个)部分。关于各种视觉任务的广泛实验表明,Semmae可以通过集成语义信息来学习更好的图像表示。特别是,Semmae在Imagenet-1k上实现了84.5%的微调精度,这使香草Mae的表现优于1.4%。在语义细分和细粒度的识别任务中,Semmae还带来了重大的改进并产生了最先进的性能。

Recently, significant progress has been made in masked image modeling to catch up to masked language modeling. However, unlike words in NLP, the lack of semantic decomposition of images still makes masked autoencoding (MAE) different between vision and language. In this paper, we explore a potential visual analogue of words, i.e., semantic parts, and we integrate semantic information into the training process of MAE by proposing a Semantic-Guided Masking strategy. Compared to widely adopted random masking, our masking strategy can gradually guide the network to learn various information, i.e., from intra-part patterns to inter-part relations. In particular, we achieve this in two steps. 1) Semantic part learning: we design a self-supervised part learning method to obtain semantic parts by leveraging and refining the multi-head attention of a ViT-based encoder. 2) Semantic-guided MAE (SemMAE) training: we design a masking strategy that varies from masking a portion of patches in each part to masking a portion of (whole) parts in an image. Extensive experiments on various vision tasks show that SemMAE can learn better image representation by integrating semantic information. In particular, SemMAE achieves 84.5% fine-tuning accuracy on ImageNet-1k, which outperforms the vanilla MAE by 1.4%. In the semantic segmentation and fine-grained recognition tasks, SemMAE also brings significant improvements and yields the state-of-the-art performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源