论文标题
从基于甲基的前体发现金属原子向石墨烯表面供应金属原子的原子途径
Discovering atomistic pathways for supply of metal atoms to graphene surface from methyl-based precursors
论文作者
论文摘要
概念2D组III氮化物和氧化物(例如,用石墨烯的异质结构中的2D Inn和2d Ino)通过金属有机化学蒸气沉积(MOCVD)实现。 MOCVD被认为是制造已建立的半导体材料的核心,并且是故意以2D限制在紧急半导体材料中提前的。 MOCVD的定义特征是使用金属有机前体,例如含有(强)金属碳键的三甲基 - indium,-gallium和-Aluminum。调节原子量表的MOCVD过程的机制在很大程度上未知。在这里,我们采用密度功能的分子动力学 - 范德华相互作用的解释 - 定位负责在气相以及顶层和零菲尔烯石墨烯上的三甲基Indindium(Tmin)前体解离的反应途径。这些模拟揭示了与氢分子,分子内或表面介导的质子转移以及直接Tmin/石墨烯反应的碰撞如何有助于Tmin转化,这最终使单体或INH和CH3IN混合物在石墨烯上递送。提出的结果还显示了石墨烯上的Tmin/H2反应是如何导致甲烷,乙烷,丙烷,乙烯,乙烯烃和原子氢的形成。这项工作提供了了解原子量表的薄膜成核和插入机制的知识,并克服了技术中2D材料和石墨烯异质结构的整合挑战。
Conceptual 2D group III nitrides and oxides (e.g., 2D InN and 2D InO) in heterostructures with graphene have been realized by metalorganic chemical vapor deposition (MOCVD). MOCVD is credited with being central to fabrication of established semiconductor materials and by purpose for an advance in emergent semiconductor materials at the 2D limit. A defining characteristic of MOCVD is the employment of metalorganic precursors such as trimethyl-indium, -gallium, and -aluminum, which contain (strong) metal-carbon bonds. Mechanisms that regulate MOCVD processes at the atomic scale are largely unknown. Here, we employ density-functional molecular dynamics -- accounting for van der Waals interactions -- to locate reaction pathways responsible for dissociation of trimethylindium (TMIn) precursor in the gas phase as well as on top-layer and zero-layer graphene. The simulations reveal how collisions with hydrogen molecules, intramolecular or surface-mediated proton transfer, and direct TMIn/graphene reactions assist TMIn transformations, which ultimately enables delivery of In monomers, or InH and CH3In admolecules, on graphene. Results presented also show how TMIn/H2 reactions on graphene, or in the gas phase, lead to formation of methane, ethane, propane, ethene hydrocarbons, and atomic hydrogen. This work provides knowledge for understanding thin-film nucleation and intercalation mechanisms at the atomic scale and for overcoming challenges in integration of 2D materials and graphene heterostructures in technology.