论文标题
De Rham时期的棱柱形晶体
Prismatic crystals over the de Rham period sheaf
论文作者
论文摘要
令$ \ Mathcal {O} _K $为具有完美残留字段的混合特征完整的离散评估戒指。我们研究$ \ mathbb {b} _ \ mathrm {dr}^+$ - $ \ mathcal {o} _k $的(log-)棱镜网站上的晶体,这是在de rham时期定义的晶体。我们首先使用某些日志连接对这些晶体进行分类。通过为$ \ mathbf {b} _ {\ Mathrm {dr}}}^+$ - 在Kummer塔上的表示,我们通过(log-)接近de rham表示将这些晶体分类。此外,我们将这些晶体的(log-)棱柱分析共同体与相应的森林共同体学和Galois的同谋进行了比较。
Let $\mathcal{O}_K$ be a mixed characteristic complete discrete valuation ring with perfect residue field. We study $\mathbb{B}_\mathrm{dR}^+$-crystals on the (log-) prismatic site of $\mathcal{O}_K$, which are crystals defined over the de Rham period sheaf. We first classify these crystals using certain log connections. By constructing a Sen--Fontaine theory for $\mathbf{B}_{\mathrm{dR}}^+$-representations over a Kummer tower, we further classify these crystals by (log-) nearly de Rham representations. In addition, we compare (log-) prismatic cohomology of these crystals with the corresponding Sen--Fontaine cohomology and Galois cohomology.